

A-96.250.830 / 030122

Betriebsanleitung

Firmware V6.20 und höher

Kundenbetreuung

Swan unterhält rund um die Welt ein dichtes Vertreternetz mit ausgebildeten Fachkräften. Kontaktieren Sie für technische Fragen die nächste Swan-Vertretung oder direkt den Hersteller:

Swan Analytische Instrumente AG Studbachstrasse 13 8340 Hinwil Schweiz

Internet: www.swan.ch E-Mail: support@swan.ch

Dokumentstatus

Titel:	Betriebsanleitung AMI Silitrace Ultra			
ID:	A-96.250.830			
Revision	Ausgabe			
00	März 2019	Erstausgabe		

© 2019, Swan Analytische Instrumente AG, Schweiz, alle Rechte vorbehalten.

Die in diesem Dokument enthaltenen Informationen können ohne Ankündigung geändert werden.

Inhaltsverzeichnis

1. 1.1. 1.2.	Sicherheitshinweise	6 7 9
2. 2.1. 2.2. 2.3.	Produktbeschreibung Beschreibung des Systems Instrumentenspezifikation Übersicht über das Instrument	10 10 15 17
3. 3.1. 3.2. 3.3.	Installation Installations-Checkliste Den Konzentrator zusammensetzen Die Instrumententafel montieren	18 18 19 22
3.4. 3.5. 3.5.1	Die Probenein- und auslassleitung anschliessen Entgasungsmembran (Option) Lieferumfang	23 24 24
3.5.2 3.5.3 3.6.	Zusätzlich benötigte Komponenten Installation Elektrische Anschlüsse	24 25 27
3.6.1 3.6.2 3.7.	Schaltkontakte	29 30 31
3.7.2 3.7.3 3.8	Schaltengang	31 32 34
3.8.1 3.9. 3.9.1	Signalausgang 1 und 2 (Stromausgänge)	34 34 35
3.9.2 3.9.3 3.9.4	Profibus-, Modbus-Schnittstelle	35 36 36

4

4.	Einrichten des Instruments	37
4.1.	Inbetriebnahme	37
4.2.	Reagenzien vorbereiten	40
4.3.	Standardlösung vorbereiten	40
4.4.	System einschalten	41
4.5.	Probenfluss regeln	42
4.6.	Schlauchpumpe aktivieren	43
4.7.	Programmierung	43
4.8.	Einlaufzeit	44
4.9.	Abschliessende Tests	44
5.	Betrieb	47
5.1.	Tasten	47
5.2	Display	48
5.3	Aufbau der Software	49
5.4	Parameter und Werte ändern	50
•		-4
b .	Wartung	51
6.1.		51
6.Z.		51
6.3.		52
6.4.		55
6.5.		56
6.6.	Reag. Hintergrund	57
6.7.	Nullpunktbestimmung.	58
6.8.		59
6.9.	System füllen	61
6.10.		62
6.11.	Langere Betriebsunterbrechungen.	62
7.	Problembehebung	63
7.1.	Fehlerliste	63
7.2.	Problemlösungsliste	68
7.3.	Die Reaktionskammer ersetzen	69
7.4.	Das 6-Wege-Ventil ersetzen	71
7.5.	Die Küvette ersetzen	73
7.6.	Die Reagenzschläuche auswechseln	74
7.7.	Das Magnetventil reinigen	77
7.8.	Das Gehäuse der Peristaltikpumpe öffnen	79
7.9.	Die Sicherungen auswechseln.	80

8. 8.1. 8.2. 8.3. 8.4. 8.5.	Programmübersicht	81 82 83 84 85
9.	Programmliste und Erläuterungen 1 Meldungen 2 Diagnose 3 Wartung 4 Betrieb 5 Installation	87 87 92 94 95
10.	Sicherheitsdatenblätter	109
11.	Werkeinstellungen	110
12.	Index	113
13.	Notizen	115

6

Betriebsanleitung

Dieses Dokument beschreibt die wichtigsten Schritte zu Einrichtung, Betrieb und Wartung des Instruments.

1. Sicherheitshinweise

Allgemeines	n diesem Abschnitt angeführten Sicherheitsbestimmungen er- en mögliche Risiken in Verbindung mit dem Betrieb des Instru- ts und enthalten wichtige Sicherheitsanweisungen zu deren mierung. In Sie die Informationen in diesem Abschnitt sorgfältig beachten, en Sie sich selbst vor Gefahren schützen und eine sicherere Ar- sumgebung schaffen. iere Sicherheitshinweise befinden sich in diesem Handbuch je- s an den Stellen, wo eine Beachtung äusserst wichtig ist. in diesem Dokument angegebenen Sicherheitshinweise sind t zu befolgen.	
Zielgruppe	Bediener: Qualifizierte Person, die das Gerät für seinen vorgesehe- nen Zweck verwendet. Der Betrieb des Instruments erfordert eingehende Kenntnisse von Anwendungen, Instrumentfunktionen und Softwareprogrammen so- wie aller anwendbaren Sicherheitsvorschriften und -bestimmungen.	
Aufbewah- rungsort Handbuch	Die Betriebsanleitung für das AMI Silitrace Ultra muss in der Nähe des Instruments aufbewahrt werden.	
Qualifizierung, Schulung	 Um das Instrument sicher zu installieren und zu betreiben, müssen Sie: die Anweisungen in diesem Handbuch lesen und verstehen. die jeweiligen Sicherheitsvorschriften kennen. 	

1.1. Warnhinweise

Die für sicherheitsbezogene Hinweise verwendeten Signalwörter und Symbole haben folgende Bedeutung:

WARNUNG

Diese Warnung weist auf gefährliche Situationen hin zu schweren Verletzungen oder zum Tod führt.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

GEFAHR

Diese Warnung weist auf gefährliche Situationen hin die möglicherweise zu schweren Verletzungen, zum Tod oder zu grossen Sachschäden führen kann.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

VORSICHT

Diese Warnung weist auf gefährliche Situationen hin die zu leichten Verletzungen, Sachschäden, Fehlfunktionen oder falschen Prozessresultaten führen können.

• Befolgen Sie sorgfältig die Anweisungen zu ihrem Schutz.

Gebotszeichen Die Gebotszeichen in dieser Betriebsanleitung haben die folgende Bedeutung:

Schutzbrille tragen

Schutzhandschuhe tragen

Warnsymbole Die Warnsymbole in dieser Betriebsanleitung haben die folgende Bedeutung:

Warnung vor gefährlicher elektrischer Spannung

Korrodierend

Gesundheitsschädlich

Entflammbar

Allgemeiner Warnhinweis

Achtung allgemein

1.2. Allgemeine Sicherheitsbestimmungen

Gesetzliche Der Benutzer ist für den ordnungsgemässen Betrieb verantwortlich. Anforderungen

Alle Vorsichtsmassnahmen sind zu beachten, um einen sicheren Betrieb des Instruments zu gewährleisten.

Es dürfen ausschliesslich Ersatzteile und Einwegartikel von SWAN Ersatzteile und verwendet werden. Bei Verwendung anderer Teile während der nor-Einwegartikel malen Gewährleistungsfrist erlischt die Herstellergarantie.

Änderungen Modifikationen und Instrumenten-Upgrades dürfen nur von autorisierten Servicetechnikern vorgenommen werden. SWAN haftet nicht für Ansprüche aus nicht autorisierten Modifikationen oder Veränderungen.

GEFAHR

Gefährliche elektrische Spannung

Ist der ordnungsgemässe Betrieb nicht mehr möglich, trennen Sie das Instrument von der Stromversorgung und ergreifen die erforderlichen Massnahmen, um einen versehentlichen Betrieb zu verhindern.

- Zum Schutz vor elektrischen Schlägen immer sicherstellen, dass der Erdleiter angeschlossen ist.
- · Wartungsarbeiten dürfen nur von autorisiertem Personal durchgeführt werden.
- Ist eine elektronische Wartung erforderlich, das Instrument sowie Geräte die an folgende Kontakte angeschlossen sind vom Netz trennen:
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

GEFAHR

Um das Instrument sicher zu installieren und zu betreiben. müssen Sie die Anweisungen in diesem Handbuch lesen und verstehen.

GEFAHR

Die in diesem Dokument beschriebenen Arbeiten dürfen nur von Personen durchgeführt werden, die von SWAN geschult und autorisiert wurden.

2. Produktbeschreibung

2.1. Beschreibung des Systems

Anwendungsbereich AMI Silitrace Ultra ist ein vollständiges Überwachungssystem zur automatischen, kontinuierlichen Bestimmung von Spuren von Kieselsäure in Reinstwasser.

- **Messprinzip** Die im Wasser gelöste Kieselsäure wird mittels einer Umkehrosmose-Membran konzentriert und anschliessend photometrisch gemessen.
- Fotometrische
BestimmungDie Bestimmung von Kieselsäure erfolgt per fotometrischer Analyse
von Molybdatblau bei 815 nm.
- Kieselsäure und Orthophosphate reagieren bei niedrigem pH-Wert von Kieselmit Ammoniummolybdat zur gelbfarbigen Molybdokieselsäure bzw. säure Molybdophosphorsäure. Die Molybdophosphorsäure wird mit Oxalsäure zerstört, bevor die Molybdokieselsäure mit Eisen-(II)-Ammoniumsulfat zum Heteropolyblau-Komplex reduziert wird. Insbesondere die Reaktionsgeschwindigkeit des ersten Reaktionsschritts zur Molybdokieselsäure ist relativ langsam. Es ist der zeitintensivste Teil der gesamten Reaktion. Da die Reaktionsgeschwindigkeit mit zunehmender Temperatur steigt, kann durch Erhitzen der Probe Zeit eingespart werden. Das AMI Silitrace Ultra-System verwendet daher eine thermostatische Reaktionskammer mit einer konstanten Temperatur von 45 °C. Bei 45 °C dauert die gesamte Reaktion nur 150 s (2,5 min). Da die Reaktionszeit eine wichtige Rolle für die Farbentwicklung einnimmt, wird die Pumpengeschwindigkeit konstant angepasst. Durch die automatische Erhitzung und die Regulierung der Reaktionszeit wird eine sehr hohe Präzision erreicht.

Entgasungs-
membran
(Option)Membranentgasungsmodul für die Behandlung stark gashaltiger
oder gasgesättigter Proben. Minimiert störende Blasenbildung beim
Erhitzen der Probe im Photometer. Benötigt eine externe Vakuum-
pumpe (nicht im Lieferumfang enthalten).

Funktionsprinzip Konzentrator Α D F F G Н G R С A Speisewasser Ε RO-Membran B Spiralgewickeltes RO-Modul F Abstandshalter C RO-Membran G Permeat **D** Abstandhalter H Konzentrat

> Der Carrcentrator fungiert als Netz, das grosse Moleküle wie Kieselsäure zurückhält und kleinere Moleküle (Wasser, Na, etc.) durchlässt. Die Membran ist gerollt, um so viele Schichten wie möglich zu erhalten. Der grösste Teil des Wassers (Permeat) fliesst durch die Membran und nur ein kleiner Teil bildet das Konzentrat. Das Permeat und das Konzentrat verlassen das Modul über zwei separate Ausgänge.

Die Trennung von Permeat und Konzentrat erfordert einen hohen Durchfluss. Mindestens 100 l/h bei 2 bar müssen vorgesehen werden, um das Wasser durch die Membran zu drücken.

Ziel dieser Messung ist es, die Kieselsäure im Konzentrat zu bestimmen und daraus die Konzentration im Speisewasser zu berechnen. Dazu müssen drei Punkte berücksichtigt werden:

- Konzentrationsfaktor: Verteilungsverhältnis zwischen dem Gesamtstrom und dem Konzentratstrom.
- Effizienz der Trennung: Konstanter Faktor von 90%.
- Hintergrund: Kieselsäuremessung des Permeats. Dieser Messwert ist die Summe aus der Kieselsäure, die sich in den Reagenzien befindet, und der Kieselsäure, die die Membran passiert. Bei einem Konzentrationsfaktor von 30–40 ist der Beitrag der Kieselsäure, die durch die Membran gelangt, jedoch vernachlässigbar und der Hintergrundwert kann als Näherungswert für die Kieselsäuremenge in den Reagenzien verwendet werden.

Der Hintergrund wird täglich gemessen, die Trenneffizienz ist ein fixer Wert und der Konzentrationsfaktor wird laufend aus den beiden Durchflussraten berechnet.

Der Kieselsäure-Wert auf der Anzeige wird wie folgt berechnet:

Sample concentration = reading Concentrate – reading Permeate (Blanc)

Dabei gilt:

Total flow Concentration factor = Efficiency • Concentrate flow

Reading Concentrate =
$$-\log\left(\frac{V_{Conc}}{V_{Zero}}\right)$$
 Reading Permeate = $-\log\left(\frac{V_{Perm}}{V_{Zero}}\right)$

Concentration factor

Fluidik Die Probe tritt am Probeneinlass [S] ein und fliesst durch den Konzentrator [Q]. Hier wird die Probe in einen Permeat- und einen Konzentratstrom aufgeteilt, die zu den Durchflusszellen [I] und [J] geleitet werden. Die Durchflussmessung erfolgt mit den an den Durchflusszellen [I] und [J] angebrachten Durchflussmessern. Die Peristaltikpumpe [O] saugt das Konzentrat aus dem 6-Weg-Ventil und pumpt es in die Reaktionskammer [C]. In der Reaktionskammer befindet sich eine Spule, die um eine Heizvorrichtung gewickelt ist. Sie verfügt über 4 Einlässe zur Dosierung der erforderlichen Reagenzien.

In der Reaktionskammer wird die Probe auf 45 °C erwärmt und Temperaturabweichungen der Probe eliminiert. Im ersten Schritt werden Ammoniummolybdat [K] und Schwefelsäure [L] hinzugefügt, um die gelbliche Molybdokieselsäure und Molybdophosphorsäure zu bilden. Anschliessend wird Oxalsäure [M] hinzugefügt, um den Molybdophosphorsäurekomplex zu maskieren. Zuletzt wird als Reduktionsmittel Ammonium-Eisen-(II)-Sulfat [N] hinzugefügt. Die Farbe der Probe wechselt zu Blau. Weil Kieselsäure nur in Spuren enthalten ist, ist die blaue Färbung nicht sichtbar.

Anschliessend fliesst die gefärbte Probe in die thermostatische Küvette [D], bis diese vollständig gefüllt ist. Die Farbintensität wird bei 815 nm gemessen. Die Farbentwicklung ist proportional zur Kieselsäurekonzentration in der Probenreaktionskammer.

Wenn das Probenvolumen in der Küvette zunimmt, fliesst die Probe in den Syphonschlauch [F] und schliesslich wird die Küvette über den Syphonschlauch entleert. Die Probe wird über den Entlüftungsund Drainageschlauch [R] in den Probenauslass geleitet.

Dosierung, Mischung und Füllung des Fotometers werden durch die Drehgeschwindigkeit der peristaltischen Pumpe [O] bestimmt. Diese Geschwindigkeit wird automatisch angepasst und gewährleistet das korrekte Timing der Messung.

- E Küvettenentlüftung
- F Probenauslass (Syphon)
- G Zuleitung von der Reaktionskammer
- H 6-Weg-Ventil
- Durchflusszelle tiefer Durchfluss 1
- J Durchflusszelle hoher Durchfluss
- K Reagenz 1

- P Nullkalibrierungsventil
- **Q** Konzentrator
- **R** Entlüftungs- und Drainageschlauch
- S Probeneingang
- Т Permeat
- **U** Konzentrat

Signal- ausgänge	Zwei programmierbare Signalausgänge für Messwerte (frei skalier- bar, linear, bilinear oder logarithmisch) oder als dauerhafter Steuer- ausgang (Steuerparameter programmierbar). Stromschleife: 0/4 – 20 mA Maximallast: 510 Ohm Dritter Signalausgang als Option erhältlich. Der dritte Signalausgang kann als Stromquelle oder als Stromsenke verwendet werden (über einen Schalter auswählbar).		
Schalt- ausgänge	Zwei potenzialfreie Kontakte programmierbar als Grenzwertgeber f Messwerte, Regler oder Schaltkontakt für Reinigungszyklen mit au tomatischer Haltefunktion. Beide Ausgänge können mit der Einstel lung normalerweise offen bzw. normalerweise geschlossen verwendet werden. Maximalbelastung: 1 A/250 VAC		
Sammel- störkontakt	 Ein potenzialfreier Kontakt. Alternativ: Offen bei Normalbetrieb, geschlossen bei Fehler und Stromausfall Geschlossen bei Normalbetrieb, offen bei Fehler und Stromausfall Zusammenfassung von Störmeldungen für programmierbare Alarmwerte und Instrumentenfehler. 		
Schalteingang	Eingang für potenzialfreie Kontakte zum «Einfrieren» des Messwerts oder zur Unterbrechung der Regelung bei automatischen Installatio- nen <i>(Haltefunktion oder Fernabschaltung)</i> .		
Kommunika- tionsschnitt- stelle (optional)	 USB-Schnittstelle für Logger-Download Dritter Signalausgang (kann parallel zur USB-Schnittstelle verwendet werden) RS485-Schnittstelle mit Fieldbus-Protokoll Modbus oder Profibus DP HART-Schnittstelle 		
Sicherheits- funktionen	Kein Datenverlust bei Stromausfall. Alle Daten werden im nicht- flüchtigen Speicher abgelegt. Überspannungsschutz für Ein- und Ausgänge. Galvanische Trennung der Messeingänge von den Sig- nalausgängen.		

2.2. Instrumentenspezifikation

Stromversor- gung	Spannung: Leistungsaufnahme	100–240 VAC (±10%) 50/60 Hz (±5%) Gleichstromausführung nicht verfügbar max. 50 VA
Spezifikationen Messumformer	Elektronikgehäuse: Umgebungstemperatur: Betriebs-Grenzbereich: Lagerung und Transport: Feuchtigkeit: Display:	Aluminium mit einem Schutzgrad von IP66 / NEMA 4X -10 bis +50 °C -25 bis +65 °C -30 bis +85 °C 10–90% rel., nicht kondensierend, LCD mit Hintergrundbeleuchtung, 75 x 45 mm
Proben- anforderungen	Durchflussrate: Temperatur: Probendruck Einlass: Probendruck Auslass:	100 l/h 5 to 50 °C 2 to 20 bar drucklos
Standort- anforderungen	Der Analysestandort mus Probeneinlass: Probenauslass: Umgebungstemperatur:	s über folgende Anschlüsse verfügen: ³ / ₄ " NPT Schlauch 15 x 20mm 5 bis 50 °C
Kieselsäure- messung	Messbereich Reproduzierbarkeit: Zykluszeit:	0.005 bis 25 ppb ±0.005 ppb oder ±5 %, je nachdem, welcher Wert grösser ist 3 min

2.3. Übersicht über das Instrument

- A Platte
- **B** Standardflasche
- C Magnetventil
- **D** Fotometermodul
- E 6-Weg-Ventil
- F Durchflusssteuerventil
- **G** Durchflusszelle tiefer Durchfluss
- H Durchflussmesser
- I Durchflusszelle hoher Durchfluss
- J Durchflussmesser

- *K* Probeneinlass tiefer Durchfluss
- L Probeneinlass hoher Durchfluss
- M Probenauslass
- N Reagenz 4
- **O** Reagenz 3
- P Reagenz 2
- Q Reagenz 1
- R Peristaltikpumpe
- S Messumformer
- T Konzentrator

3. Installation

3.1. Installations-Checkliste

Standortanfor- derungen	100–240 VAC (±10%), 50/60 Hz (±5%) Stromaufnahme: 50 VA Maximum Anschluss an Schutzerde erforderlich Probenleitung mit genügend Durchfluss und Druck (siehe Instru- mentenspezifikation, p. 15).
Installation	Den Konzentrator zusammensetzen, p. 19 Die Instrumententafel montieren, p. 22. Die Probenein- und auslassleitung anschliessen, p. 23.
Elektrische Anschlüsse	 Hinweis: Das Instrument erst einschalten, wenn alle elektrischen Anschlüsse vorgenommen wurden. Alle externen Vorrichtungen wie Endschalter, Stromschleifen und Pumpen anschliessen. Elektrische Anschlüsse, p. 27. Das Netzkabel anschliessen, siehe Stromversorgung, p. 30.
Inbetriebnahme	Gemäss Inbetriebnahme, p. 37 vorgehen.

3.2. Den Konzentrator zusammensetzen

Der Konzentrator wird in den folgenden Teilen geliefert:

1 Die Konzentratormembran [B] in das Konzentratorgehäuse [A] einsetzen.

⇒ Die auf dem Membran-Etikett angegebene Durchflussrichtung beachten. Die Durchflussrichtung ist von unten nach oben

2 Den Probenausgang auf dem Konzentratorgehäuse markieren.

- A Konzentratorgehäuse
- D O-Ring
- E Deckel

- 3 Den O-Ring [D] in die Nut am Deckel [E] einsetzen.
- 4 Den Deckel in das Konzentratorgehäuse [A] einsetzen.

- **5** Die Deckelbefestigungsplatten [F] in die Nut am Konzentratorgehäuse einsetzen.
- 6 Schrauben einsetzen und festziehen.
- 7 Mit dem zweiten Deckel die Schritte 2 bis 4 auf der anderen Seite wiederholen.

AMI Silitrace Ultra

Installation

- C Schlauchset
- **C1** Serto-Verschraubung hoher Durchfluss
- **C**₂ Serto-Verschraubung tiefer Durchfluss

Hinweis: Beim Anschliessen der Probenschläuche die Durchflussrichtung beachten. Das Schlauchset auf der Seite installieren, die als Probenausgang markiert wurde.

- 8 Die Serto-Verschraubung [C₁] in das mittlere Gewinde des Deckels schrauben.
- 10 Die Serto-Verschraubungen gut festziehen.
- **11** An der Unterseite das mittlere Gewinde mit dem Blindstopfen [G] verschliessen.
- **12** An der Unterseite die Serto-Verschraubung [H] in das Gewinde am Rand des Deckels schrauben.

G Blindstopfen

H Serto-Verschraubung Probeneingang

3.3. Die Instrumententafel montieren

Der erste Teil dieses Kapitels erläutert die Vorbereitung und Platzierung des Instruments für den Gebrauch.

- Das Instrument darf nur von geschultem Personal installiert werden.
- Montieren Sie das Instrument in vertikaler Ausrichtung.
- Zur einfacheren Bedienung das Instrument so anbringen, dass sich die Anzeige auf Augenhöhe befindet.
- Zwecks Installation ist ein Kit mit folgenden Materialien erhältlich:
 - 4 Schrauben 8 x 60 mm
 - 4 Dübel
 - 4 Unterlegscheiben 8,4/24 mm

Montageanforderungen Bas Instrument ist nur für den Gebrauch in Innenräumen gedacht. Für Abmessungen siehe Abmessungen, p. 16.

Die Hohlprofile montieren Die Hohlprofile [A] mit den Rohrschellen [B] nach links gerichtet an einer Wand oder einem geeigneten Träger montieren. Die Instrumententafel mit den Befestigungsschrauben [C] an den Hohlprofilen montieren.

3.4. Die Probenein- und auslassleitung anschliessen

- A Probeneingang tiefer Durchfluss
- **B** Durchflusszelle tiefer Durchfluss
- C Probeneingang hoher Durchfluss H Rändelmuttern
- **D** Durchflusszelle hoher Durchfluss **I**
- E Schlauchtülle
- Proben-Für die Probezuleitung einen Plastikschlauch (FEP; PA oder PE) verwenden. eingang
 - Die Rändelmuttern [H] und die Kompressionsmuffen [I] über die 1 Plastikschläuche [G] schieben.
 - 2 Die Plastikschläuche an den entsprechenden Probeneingängen in die Winkelverschraubungen [J] stossen.
 - 3 Die Rändelmuttern anziehen.

Probenauslass Den 1/2" Schlauch [F] an der Schlauchtülle [E] anschliessen und mit einem genügend dimensionierten, drucklosen Ablauf verbinden.

- F 1/2" Schlauch
- G Plastikschläuche
- Kompressionsmuffen
- J Winkelverschraubungen

3.5. Entgasungsmembran (Option)

3.5.1 Lieferumfang

Die Option beinhaltet die folgenden Komponenten:

- Entgasungsmembran montiert auf Stahlplatte [B] mit Blindstopfen am linken Anschluss.
- Zusätzlicher Probenschlauch [C]
- 2 Meter Schlauch [D] f
 ür den Anschluss der Entgasungsmembran an die Vakuumpumpe

3.5.2 Zusätzlich benötigte Komponenten

Vakuumpumpe Zusätzlich zu den im Lieferumfang enthaltenen Komponenten muss eine passende Vakuumpumpe durch den Kunden beschafft werden. Die Vakuumpumpe muss ein Vakuum von mindestens -0.3 bar garantieren.

Die Entgasungsmembran wurde erfolgreich mit der folgenden Vakuumpumpe getestet:

Hersteller: KnF Typ: Laboport N86KT.18

Es ist möglich, eine andere Vakuumpumpe zu verwenden, allerdings sollten die Eigenschaften ähnlich sein wie bei der getesteten Pumpe.

Vakuum-Manometer Manometer Optional kann ein Manometer mit dem Anschluss auf der linken Seite der Entgasungsmembran verbunden werden. Der Anschluss hat ein M6-Innengewinde und ist im Auslieferungszustand mit einem Blindstopfen verschlossen.

Das Vakuum-Manometer muss durch den Kunden beschafft werden, falls benötigt.

3.5.3 Installation

Montage 1 Die Entgasungsmembran wie im Bild gezeigt auf die Instrumententafel montieren. Zum Befestigen die Schraube des Kabelhalters verwenden.

- Schläuche anschliessen
- **2** Schlauch 03 vom Eingang [A] der Reaktionskammer abschrauben und an den Eingang [G] der Entgasungsmembran schrauben.
- **3** Den Ausgang [J] der Entgasungsmembran mit dem Eingang [A] der Reaktionskammer verbinden. Dazu den zusätzlichen Schlauch verwenden.
- 4 Zur Verbindung der Entgasungsmembran mit der Vakuumpumpe den in diesem Installationskit enthaltenen Schlauch [I] verwenden. Falls nötig, den Schlauch auf die erforderliche Länge kürzen.
- **5** Gegebenenfalls den Blindstopfen [D] entfernen und ein passendes Manometer anschliessen.

- A Eingang Reaktionskammer
- **B** Zusätzlicher Probenschlauch **H** Entgasungsmembran
- **C** Peristaltikpumpe
- **D** Blindstopfen / Möglichkeit zum **J** Ausgang Anschluss eines Manometers
- E Schlauch 02
- F Schlauch 03

- G Eingang Entgasungsmembran
- Schlauch von Vakuumpumpe 1
 - - Entgasungsmembran
- **K** Fotometer

3.6. Elektrische Anschlüsse

Gefahr durch elektrischen Stromschlag

- Schalten Sie das Instrument vor Arbeiten an elektrischen Bauteilen immer aus.
- Erdungsanforderungen: Schliessen Sie das Instrument nur an eine geerdete Steckdose an.
- Stellen Sie vor der Inbetriebnahme sicher, dass die Netzspannung vor Ort mit den Spezifikationen des Instruments übereinstimmt.

Kabelstärke Zur Einhaltung des Schutzgrades IP 66 verwenden Sie die folgenden Kabelstärken:

- A PG 11 Kabelverschraubung: Kabel Ø_{aussen} 5–10 mm
- B PG 7 Kabelverschraubung: Kabel Ø_{aussen} 3–6,5 mm
- C PG 9 Kabelverschraubung: Kabel Ø_{aussen} 4–8 mm

Hinweis: Verschliessen Sie nicht verwendete Leitungseinführungen.

Verdrahtung

- Für Stromversorgung und Schaltausgang: Verwenden Sie Litzendraht (max. 1,5 mm²/AWG 14) mit Aderendhülsen.
- Für Signalausgänge und Schalteingang: Verwenden Sie Litzendraht (max. 0,25 mm²/AWG 23) mit Aderendhülsen.

GEFAHR

Fremdspannung

Extern gespeiste Geräte die an Schaltausgang 1 oder 2 oder an den Sammelstörkontakt angeschlossen sind können elektrische Schläge verursachen.

- vor der Fortführung der Installation müssen Geräte die an folgende Kontakte angeschlossen sind vom Netz getrennt werden.
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

GEFAHR

Um elektrische Schläge zu verhindern, das Instrument nicht mit dem Stromnetz verbinden, wenn kein Erdleiter (PE) angeschlossen ist.

 Stellen Sie die Verbindung erst nach ausdrücklicher Aufforderung her.

GEFAHR

Die Hauptstromversorgung des AMI-Messumformers muss mit einem Hauptschalter und geeigneter Sicherung oder einem Schutzschalter gesichert sein.

3.6.1 Anschlussdiagramm

VORSICHT

Verwenden Sie nur die in diesem Diagramm dargestellten Klemmen und nur zum vorgesehenen Zweck. Der Einsatz anderer Klemmen kann zu Kurzschlüssen und damit zu Beschädigungen oder Verletzungen führen.

3.6.2 Stromversorgung

GEFAHR

Gefahr durch Stromschlag.

Die Installation und Wartung elektrischer Teile muss durch einen Fachmann erfolgen. Schalten Sie das Instrument vor Arbeiten an elektrischen Bauteilen immer aus.

- A Netzteilanschluss-Stecker
- B Neutralleiter, Klemme 2
- C Aussenleiter, Klemme 1
- **D** Schutzleiter

Hinweis: Der Schutzleiter (Erde) muss an der Erdungsklemme angeschlossen werden.

Installations-Die Installation muss folgende Bedingungen erfüllen:

bedingungen

- Das Stromkabel muss den Normen IEC 60227 oder IEC 60245
 - sowie der Brandschutzklasse FV1 entsprechen.
 - · Die Stromversorgung mit einem externen Schalter oder Unterbrecher muss
 - sich nahe am Gerät befinden
 - f
 ür den Bediener leicht zug
 änglich sein
 - als Unterbrecher gekennzeichnet sein für AMI Silitrace Ultra

3.7. Schaltkontakte

3.7.1 Schalteingang

Hinweis: Verwenden Sie nur potenzialfreie (trockene) Kontakte. Der Gesamtwiderstand (Summe aus dem Kabelwiderstand und dem Widerstand des Relais) muss kleiner als 50 Ω sein.

Klemmen 30/31 Nähere Informationen zur Programmierung finden Sie in Programmliste und Erläuterungen, p. 87.

3.7.2 Sammelstörkontakt

Hinweis: Maximalbelastung 1 A/250 VAC

Alarmausgang für Systemfehler. Informationen zu Fehlercodes erhalten Sie in Fehlersuche, p. 38.

Hinweis: Bei bestimmten Alarmen und bei bestimmten Einstellungen am AMI Transmitter schaltet das Alarmrelais nicht. Der Fehler wird jedoch am Display angezeigt.

	Klemmen	Beschreibung	
NC ¹⁾ Normaler- weise geschlossen	10/11	Aktiv (geöffnet) im Normalbe- trieb. Inaktiv (geschlossen) bei Feh- lern und Stromausfall.	
NO Normaler- weise offen	12/11	Aktiv (geschlossen) im Nor- malbetrieb. Inaktiv (geöffnet) bei Fehlern und Stromausfall.	

1) Normale Verwendung

3.7.3 Schaltausgang 1 und 2

Hinweis: Maximalbelastung 1 A/250 VAC

Die Schaltausgänge 1 und 2 können mit einem Jumper als «normalerweise offen» oder «normalerweise geschlossen» konfiguriert werden. Standard für beide Schaltausgänge ist «normalerweise offen». Um einen Schaltausgang als «normalerweise geschlossen» zu konfigurieren, den Jumper in die obere Position setzen.

Hinweis: Bestimmte Fehlermeldungen und der Instrumentenstatus können den nachfolgend beschriebenen Relaisstatus beeinflussen.

Konfigur ation	Klemmen	Jumper Position	Beschreibung	Relaiskonfiguration
normaler- weise offen	6/7: Relais 1 8/9: Relais 2		Inaktiv (geöffnet) bei Normal- betrieb und Stromausfall. Aktiv (geschlossen) wenn eine programmierte Funktion aus- geführt wird.	
normaler- weise geschlos- sen	6/7: Relais 1 8/9: Relais 2	•	Inaktiv (geschlossen) bei Nor- malbetrieb und Stromausfall. Aktiv (geöffnet) wenn eine pro- grammierte Funktion ausge- führt wird.	

A Jumper in Position «normalerweise offen» (Standard)

B Jumper in Position «normalerweise geschlossen»

Programmierung siehe Programmliste und Erläuterungen, p. 87.

VORSICHT

Mögliche Beschädigung der Schaltkontakte im AMI Messumformer verursacht durch hohe induktive Last.

Stark induktive oder direkt gesteuerte Lasten (Magnetventile, Dosierpumpen) können die Schaltkontakte zerstören.

• Um induktive Lasten > 0.1 A zu schalten, eine AMI Relaybox oder ein passendes Hochstromrelais verwenden.

Induktive Last Kleine induktive Lasten von max. 0,1 A wie z. B. die Spule eines Netzrelais lassen sich direkt schalten. Um Störspannungen im AMI Messumformer zu vermeiden, ist der Anschluss einer Dämpferschaltung parallel zur Last zwingend erforderlich, das ist bei der Verwendung einer AMI-Relaisbox nicht notwendig.

- A AC- oder DC-Speisung
- **B** AMI Messumformer
- **C** Externes Hochstromrelais
- D Dämpferschaltung
- E Spule des Hochstromrelais

Ohmsche Last Ohmsche Lasten (max. 1 A) und Regelsignale für PLC, Impulspumpen usw. können ohne zusätzliche Massnahmen direkt angeschlossen werden.

- A AMI Messumformer
- **B** PLC oder gesteuerte Pulspumpe
- C Logikschaltung
- Aktuatoren Stellmotoren und Aktoren verwenden beide Schaltkontakte: den einen zum Öffnen und den anderen zum Schliessen des Ventils, d. h. bei zwei verfügbaren Schaltkontakten kann nur ein Motorventil angesteuert werden. Motoren mit mehr als 0,1 A müssen über Hochstromrelais oder eine AMI-Relaisbox gesteuert werden.

- A AC- oder DC-Speisung
- B AMI Messumformer
- **C** Aktuator

3.8. Signalausgänge

3.8.1 Signalausgang 1 und 2 (Stromausgänge)

Hinweis: Maximallast 510 Ω Werden Signale an zwei verschiedene Empfänger geschickt, sollte ein Signaltrenner (Schleifenisolator) verwendet werden.

Signalausgang 1: Klemmen 14 (+) und 13 (-) Signalausgang 2: Klemmen 15 (+) und 13 (-) Für weitere Infos zur Programmierung siehe Programmliste und Erläuterungen, p. 87, Menü **Installation**.

3.9. Schnittstellenoptionen

- A AMI-Messumformer
- B Schnittstellensteckplatz
- C Schraubklemmen

Der Schnittstellensteckplatz kann verwendet werden, um die Funktionalität des AMI-Instruments mit einer der folgenden Schnittstellen zu erweitern:

- dritter Signalausgang,
- Profibus- oder Modbus-Anschluss,
- HART-Anschluss oder
- USB-Schnittstelle

3.9.1 Signalausgang 3

Klemmen 38 (+) und 37 (-).

Erfordert die Żusatzplatine für den dritten Signalausgang 0/4 - 20 mA. Der dritte Signalausgang kann als Stromquelle oder als Stromsenke verwendet werden (über Schalter [A] auswählbar). Nähere Informationen finden Sie in den dazugehörigen Installationsanweisungen.

Hinweis: Maximallast 510 Ω .

Dritter Signalausgang 0/4 - 20 mA

A Betriebsmodus-Wahlschalter

3.9.2 Profibus-, Modbus-Schnittstelle

Klemme 37 PB, Klemme 38 PA Infos zum Aufbau eines Netzwerks mit mehreren Geräten oder zur Konfiguration einer PROFIBUS DP-Verbindung finden Sie im PRO-FIBUS-Handbuch. Entsprechendes Netzwerkkabel verwenden.

Hinweis: Bei nur einem installierten Gerät bzw. am letzten Gerät auf dem Bus muss der Schalter auf EIN stehen.

Profibus-, Modbus-Schnittstelle (RS 485)

A Ein-/Aus-Schalter

3.9.3 HART-Schnittstelle

Klemmen 38 (+) und 37 (-). Die HART-Schnittstelle ermöglicht Kommunikation über das HART-Protokoll. Nähere Informationen finden Sie in der HART-Anleitung.

HART-Schnittstelle

3.9.4 USB-Schnittstelle

Die USB-Schnittstelle wird zum Speichern von Logger-Daten und für Firmware-Uploads verwendet. Nähere Informationen finden Sie in den dazugehörigen Installationsanweisungen.

Der optionale dritte Signalausgang 0/4 - 20 mA [B] kann an die USB-Schnittstelle angeschlossen und parallel verwendet werden.

USB Interface

- A USB-Schnittstelle
- B Dritter Signalausgang 0/4 20 mA

4. Einrichten des Instruments

4.1. Inbetriebnahme

In der folgenden Tabelle sind alle notwendigen Schritte für die erfolgreiche Inbetriebnahme des AMI Silitrace Ultra aufgeführt. Darüber hinaus werden für jeden Schritt das zu erwartende Ergebnis und Korrekturmassnahmen angezeigt.

Hinweis: Es ist wichtig, für jeden Schritt das Ergebnis zu prüfen, bevor mit dem nächsten Schritt fortgefahren wird. Wir empfehlen, genau nach der in der Tabelle angegebenen Reihenfolge vorzugehen.

Voraussetzungen Das Analysegerät wurde montiert, mit der Proben- und Abflussleitung verbunden und an die Stromversorgung angeschlossen (siehe Installation, S. 18).

Schritt	Erwartetes Ergebnis	Korrekturmassnahmen
Reagenzien vorbereiten 40, Standardlösung vorberei- ten 40	n. z.	n. z.
System einschalten 🗎 41	 Der AMI-Messumformer wird gestartet. Der Startbildschirm wird angezeigt. 	 Elektrische Anschlüsse prüfen Sicherungen prüfen
Falls vorhanden, die Vakuumpumpe der Entgasungsmembran einschalten.	n.z.	n.z.
Probenfluss anpassen 42 (der Konzentrations- faktor sollte zwischen 30 und 40 liegen)	 Die Durchflussrate wird auf dem Startbildschirm angezeigt. 	 Probenleitung kontrollieren Verkabelung des Durch- flusssensors prüfen

AMI Silitrace Ultra Einrichten des Instruments

Schritt	Erwartetes Ergebnis	Korrekturmassnahmen	
Schlauchpumpe aktivie- ren 🖹 43, System füllen 🖺 43	 Die Schläuche werden gefüllt. Die Flüssigkeit bewegt sich mit einer Geschwindigkeit von ca. 1 cm pro 5 s. 	 Anschlüsse der Pum-penschläuche festziehen Kontrollieren, ob die Verschlussrahmen korrekt eingerastet sind Kontrollieren, ob die Verschlussrahmen und Pumpenschläuche in einem 90°-Winkel zum Rotor ausgerichtet sind. 	
Programmierung 🗎 43	n. z.	n. z.	
Das Instrument während mindestens einer Stunde einlaufen lassen.	 Die Durchflussraten von Konzentrat und Permeat sind stabil 	 Stabile Durchflussverhältnisse sicherstellen Der Membran mehr Zeit zum Einlaufen geben. 	
Alle anliegenden Fehler beheben	 Es werden keine Fehler angezeigt. 	◆ Siehe	
Sichtprüfung der Reaktionskammer 🖹 44	 Keine Luftblasen in der Reaktionskammer vorhanden. 	 Alle Schlauchver- bindungen anziehen. 	
 Fotometer-Rohwerte prüfen [●] 45 Die Fotometer- Rohwerte folgen einem voll/leer-Muster. Während der Fotometer befüllt wird, ist ein instabiler Rohwert normal. Nachdem die Küvette vollständig gefüllt ist, muss der Rohwert stabil bleiben. 		 Küvette blockiert. Küvette nicht voll eingerastet. 	
P2P-Periode prüfen 🗎 46	 P2P-Periode beträgt nicht «0 s». 	 Warten, bis das System frei von Luftblasen ist. Warten, bis die Küvette zweimal geleert wurde. 	

AMI Silitrace Ultra Einrichten des Instruments

Schritt	Erwartetes Ergebnis	Korrekturmassnahmen
Hintergrund-Kalibrierung durchführen	 Hintergrund- Kalibrierung erfolgreich 	 Stabile Durchflussverhältnisse sicherstellen Der Membran mehr Zeit zum Einlaufen geben. Siehe 63.
Nullpunktbestimmung durchführen 🖹 46	 Der Rohwert liegt nahe bei 2.2 V. 	 Küvette reinigen / System mit Ammoniaklösung spülen 62. Küvettenfaktor-Bestim- mung durchführen 93. Prüfen, ob das Nullkali- brierungsventil wechselt. Siehe 63.
Die Rohwerte der Null- punktbestimmung und der Hintergrund-Kalibrierung vergleichen	 Der Rohwert der Nullpunktbestimmung ist grösser oder gleich wie der Rohwert der Hintergrundkalibrierung. 	 Stabile Durchflussverhältnisse sicherstellen Der Membran mehr Zeit zum Einlaufen geben. Siehe https://www.selfattingen.com
Standardkalibrierung durchführen	 Der Kalbrierungsfaktor liegt zwischen 0.5 und 2.0. 	 Die eingestellte Konzentration der Standardlösung prüfen. Die Kalibrierung mit frischer Standardlösung wiederholen.

4.2. Reagenzien vorbereiten

Siehe Reagenzien auffüllen/austauschen, S. 52.

4.3. Standardlösung vorbereiten

Es sind folgende Standardlösungen verfügbar:

- 100 ppb Standardlösung in einer 250-ml-Flasche
- 100 ppm Stammlösung in einer 100-ml-Flasche

Standard Gebrauchsfertig.

100 ppb

Stammlösung
100 ppmAus der Stammlösung können Sie Ihre eigene Standardlösung her-
stellen. Es können Standardlösungen von 10 bis 1000 ppb für das
AMI Silitrace Ultra verwendet werden.

SWAN empfiehlt, keine eigene Standardlösung zu mischen! Das Instrument ist für eine Standardlösung von 100 ppb voreingestellt.

Hinweis: Wenn Sie eine von 100 ppb abweichende Standardlösung herstellen, programmieren Sie die Standardkonzentration unter Menü <Installation>/<Sensoren>/ < Messparameter>/<Kal./Verif.>/<Standard>.

Die folgende Verdünnung durchführen, um einen Standard von 100 ppb zu erhalten:

- 1 250-ml-Flasche auf Waage stellen und Waage auf 0 g stellen.
- 2 250 µg Stammlösung 100 ppm einfüllen.
- 3 Behälter bis 250 g mit entmineralisiertem Wasser füllen.
- 4 Flasche mit der korrekten Konzentration kennzeichnen.
- 5 Instrument entsprechend programmieren, s. 5.1.1.1.1, S. 95.

AMI Silitrace Ultra Einrichten des Instruments

Standardverbrauch Zur Kalibrierung oder Verifikation werden etwa 15 ml Standardlösung verbraucht. Daher reicht eine Standardflasche bei den standardmässigen Intervalleinstellungen für 3 Monate. Standardmässige Intervalleinstellungen:

Startzeit:	06:00:00
Montag:	Verifikation
Alle anderen	Aus
lage:	

Die Standardflasche [C] an den Flaschenhalter [B] anschrauben.

- A Instrumententafel
- B Flaschenhalter
- C Standardflasche

4.4. System einschalten

Öffnen Sie den Probenhahn und schalten Sie das Instrument ein.

Nach dem Einschalten beginnt das Instrument mit dem Aufwärmen der Reaktionskammer. Während der Aufwärmphase erscheint auf dem Bildschirm <INIT> und der Alarm E008 ist aktiv.

Hinweis: Die Dauer der Aufwärmphase ist abhängig von der Umgebungstemperatur des Betriebsorts.

Sobald die Reaktionskammer die Betriebstemperatur erreicht hat, wechselt die Anzeige auf <RUN>.

42

4.5. Probenfluss regeln

- A Konzentrator
- **B** Durchflusszelle hoher Durchfluss
- C Blindstopfen
- **D** Durchflusszelle tiefer Durchfluss
- E Durchflussregulierventil

1 Den Hauptstrom so einstellen, dass der Konzentrationsfaktor zwischen 30 und 40 liegt. Dies sollte bei einem Permeat-Durchfluss von 130 l/h und einem Konzentrat-Durchfluss von 3 l/h möglich sein.

Hinweis: Nachweisgrenzen im niedrigen ppt-Bereich werden nur bei einem Konzentrationsfaktor von 35 und mehr erreicht.

2 Falls nicht genügend Durchfluss vorhanden ist, das Durchflussregelventil [E] auf ca. 3 l/h einstellen.

4.6. Schlauchpumpe aktivieren

Die Verschlussrahmen der Schlauchpumpe sind bei Transport und Lagerung geöffnet. Dadurch wird verhindert, dass die Pumpenschläuche an den Druckpunkten aneinander haften.

1 Drehen Sie die Verschlussrahmen [B] im Uhrzeigersinn, bis diese einrasten, um die Schlauchpumpe zu aktivieren.

Hinweis: Kontrollieren, ob die Verschlussrahmen und Pumpenschläuche in einem 90°-Winkel zum Rotor ausgerichtet sind.

- A Durch Drehen verriegeln
- B Verschlussrahmen
- **c** Rotor
- D Pumpenschlauch

System füllen Wählen Sie die Option <System füllen> im Menü <Wartung / Service>. Dadurch wird die Reagenzpumpe aktiviert und alle Schläuche werden vom Behälter bis zum Küvettenauslass gefüllt.

4.7. Programmierung

Alle Parameter für externe Geräte (Schnittstelle, Rekorder etc.) programmieren. Alle Parameter für den Betrieb des Instruments (Grenzwerte, Alarmwerte) programmieren. Siehe Programmliste und Erläuterungen, S. 87.

Einlaufzeit 4.8.

Sobald der Probenfluss eingestellt ist, lassen Sie das Gerät mindestens eine Stunde lang einlaufen.

Hinweis: Diese Zeit wird benötigt, um stabile Durchfluss- und Konzentrationsverhältnisse in der Membran zu erreichen. Jede Schwankung des Eingangs-Probenflusses sowie Druckveränderungen stören diesen Prozess.

Abschliessende Tests 4.9.

Anliegende Fehler Sichtprüfung der Reaktionskammer

Alle anliegenden Fehler beheben, siehe Fehlerliste, S. 63.

Vorsichtig die Küvette [C] aus dem Fotometermodul herausziehen und die Abdeckung [B] öffnen. Sicherstellen, dass keine Luftblasen in der Reaktionskammer [D] vorhanden sind. Falls dies der Fall ist:

· Prüfen, ob alle Schlauchverbindungen fest angezogen sind

- A Abdeckungsfixierschrauben
 - B Fotometermodul-Abdeckung
 - C Küvette

D Reaktionskammer

Abdeckung wieder schliessen und die Küvette einrasten.

Fotometer-
RohwertWählen Sie <Diagnose>/<Sensoren>/<SilTrace>/<Fotometer>.
Kontrollieren, ob die Fotometer-Rohwerte einem voll/leer-Muster fol-
gen. Siehe nachfolgendes Beispiel:

Während die Küvette befüllt wird, ist ein instabiler Rohwert normal. Nachdem die Küvette vollständig gefüllt ist, muss der Rohwert stabil bleiben.

Falls dies nicht der Fall ist:

- · Prüfen, ob die Küvette blockiert ist
- · Prüfen, ob die Küvette richtig eingerastet ist

P2P-Zyklus	 Wählen Sie <diagnose>/<sensoren>/<zyklusdiagnose>.</zyklusdiagnose></sensoren></diagnose> Kontrollieren, ob das Analysegerät bereits einen gültigen Messzyk- lus durchgeführt hat. Das wird durch eine P2P-Periode ungleich «0 s» angezeigt. Falls dies nicht der Fall ist: Warten, bis das System frei von Luftblasen ist Warten, bis die Küvette zweimal geleert wurde
Hintergrund- kalibrierung	Manuell eine Hintergrundkalibrierung starten. Falls die Hintergrundkalibrierung fehlschlägt: • Stabile Durchflussbedingungen sicherstellen • Die Membran länger einlaufen lassen und erneut versuchen.
Nullpunktbe- stimmung	 Manuell eine Nullpunktbestimmung (Nullpunktbestimmung, S. 58) starten, anschliessend den Rohwert unter <diagnose>/<sensoren>/< <verlauf>/<nullpunkt history=""> prüfen. Der Rohwert muss nahe bei 2.2 V liegen.</nullpunkt></verlauf></sensoren></diagnose> Falls dies nicht der Fall ist: Prüfen, ob das Nullkalibrierungsventil schaltet (Reagenz 1 wird in die Abflussleitung geführt) Fotometer mit Ammoniaklösung reinigen (siehe Fotometer reinigen, S. 62) Küvettenfaktor-Bestimmung durchführen (siehe 3.5.3, S. 93) Als nächstes den Rohwert der Hintergrundkalibrierung in <diagno- se>/<sensoren>/<history>/<hintergrund hist.=""> überprüfen. Der Rohwert der Nullpunktbestimmung muss grösser oder gleich wie der Rohwert der Hintergrundkalibrierung sein.</hintergrund></history></sensoren></diagno- Falls diese Prüfung fehlschlägt: Stabile Durchflussbedingungen sicherstellen Die Membran länger einlaufen lassen und erneut versuchen.
Standard- lösung Kalibrierung	 Manuell eine Standardkalibrierung (Kalibrierung, S. 55) starten, anschliessend den Kalibrierungsfaktor unter <diagnose>/ <sensoren>/<kal.> History> prüfen. Der Kalbrierungsfaktor muss zwischen 0.5 und 2.0 liegen.</kal.></sensoren></diagnose> Falls dies nicht der Fall ist: Prüfen, ob die eingestellte Konzentration dem Referenzwert der Standardlösung entspricht Die Kalibrierung mit einer neuen Standardlösung wiederholen

5. Betrieb

5.1. Tasten

- A um das Menü zu verlassen/den Befehl abzubrechen (ohne Änderungen zu speichern) um zur vorherigen Menüebene zurückzukehren
- **B** um sich in einer Menüliste ABWÄRTS zu bewegen und Werte zu verringern
- C um sich in einer Menüliste AUFWÄRTS zu bewegen und Werte zu erhöhen um zwischen Bildschirm 1 und 2 zu wechseln
- **D** um ein ausgewähltes Untermenü zu öffnen um einen Eintrag zu akzeptieren

5.2. Display

Α	RUN	Normalbetrieb
	HOLD	Schalteingang geschlossen oder Kal. Verzög.: Regler/ Grenzwert unterbrochen (zeigt Status der Signalausgänge)
	OFF	Schalteingang geschlossen: Regler/Grenzwert unterbrochen (zeigt Status der Signalausgänge).

- B ERROR 🚽 Fehler
- **C** Zeigt die verbleibende Reagenzienmenge in% wenn < 17% (= 340 ml)
- D Tasten gesperrt, Messumformer-Kontrolle via Profibus
- E Zeit

- F Prozesswert
- G Konzentrationsfaktor
- H Probenfluss Konzentrat
- I Probenfluss Permeat
- J Status Schaltausgänge

Status Schaltausgang, Symbole

- $egmtharpoonstate{\composition{\compositio$
- \bigcirc Oberer/unterer Grenzwert erreicht
 - Regler aufw./abw.: keine Aktion

Regler aufw./abw.: aktiv, dunkler Balken zeigt die Reglerintensität

- Stellmotor geschlossen
- Stellmotor: offen, dunkler Balken steht für ungefähre Position
- Zeitschaltuhr
- Zeitschaltuhr: Zeitschaltuhr aktiv (drehender Zeiger)

5.3. Aufbau der Software

b

Hauptmenü	1
Meldungen	•
Diagnose	•
Wartung	•
Betrieb	
Installation	•

Meldungen	1.1
Anliegende Fehler	•
Wartungs-Liste	•
Meldungs-Liste	•
Diagnose	2.1
Identifikation	•
Sensoren	•
Probe	•
E/A Zuständo	

Wartung	3.1
Kalibrierung	•
Verifikation	•
Reag. Hintergrund	
Nullpunkt	•
Service	•

Schnittstelle

Betrieb	4.1
Sensoren	•
Schaltkontakte	•
Logger	•

Installation	5.1
Sensoren	•
Signalausgänge	•
Schaltkontakte	
Diverses	•
Schnittstelle	►

Menü 1: Meldungen

Zeigt die aktuellen Fehler sowie ein Ereignisprotokoll (Zeit und Status von Ereignissen, die zu einem früheren Zeitpunkt eingetreten sind) sowie Wartungsanfragen. Enthält benutzerrelevante Daten.

Menü 2: Diagnose

Enthält benutzerrelevante Instrumenten- und Probendaten.

Menü 3: Wartung

Für Instrumentenkalibrierung, Service, Schalt- und Signalausgangssimulation und Einstellung der Instrumentenzeit.

Verwaltung durch den Kundendienst.

Menü 4: Betrieb

Untermenü von Menü 5 - **Installation**, aber prozessbezogen. Anwenderrelevante Parameter, die während des täglichen Betriebs möglicherweise angepasst werden müssen. Normalerweise passwortgeschützt und durch Prozess-Bediener verwaltet.

Menü 5: Installation

Zur Erstinbetriebnahme des Instruments und Einstellung aller Instrumentenparameter durch autorisierte SWAN-Techniker. Kann durch ein Passwort geschützt werden.

50

5.4. Parameter und Werte ändern

Ändern von Parametern	Das folgende Beispiel zeigt	t, wie 1 2	e das Logintervall geändert wird: Den Menüpunkt auswählen der ge- ändert werden soll. [Enter] drücken.
	Logger d 13 Loginterv Intervall J Logger lö 5 Minuten 30 Minuten	3 4	Mit der < _> oder < > Taste den gewünschten Parameter aus- wählen. [Enter] drücken, um die Auswahl zu bestätigen oder [Exit], um den Para-
	1 Stunde Logger 4.1.3 Logintervall 10 Minuten Logger löschen nein	5	 meter beizubehalten. ⇒ Der ausgewählte Parameter wird angezeigt (ist aber noch nicht gespeichert). [Exit] drücken.
	Logger 4.1.3 Loginter Speichern? Logger Lua Nein	6	 ⇒ Ja ist markiert. [Enter] drücken, um den neuen Parameter zu speichern. ⇒ Der Messumformer wird neu gestartet und der neue Parameter wird übernommen.
Ändern von Werten	Kieselsäure5.3.1.1.1Alarm hoch50.0 ppbAlarm tief0.000 ppbHysterese0.500 ppbVerzögerung5 Sek	1 2 3	Den Wert auswählen der geändert werden soll. [Enter] drücken. Mit der < > oder < > Taste den neuen Wert einstellen.
	Kieselsäure5.3.1.1.1Alarm hoch15.0 ppbAlarm tief0.000 ppbHysterese0.500 ppbVerzögerung5 Sek	4 5 6	 [Enter] drücken um die Änderung zu bestätigen. [Exit] drücken. ⇒ Ja ist markiert. [Enter] drücken, um den neuen Wert zu speichern.

Das folgende Reisniel zeigt wie das Logintervall geändert wird:

6. Wartung

6.1. Wartungstabelle

Monatlich	Reagenzien austauschen.
Alle 2–3 Monate	Standardlösung prüfen und bei Bedarf aus- tauschen.
Halbjährlich	Schläuche der Reagenzpumpe wechseln. Nach dem Austauschen der Schläuche eine Kalibrierung durchführen
Im Bedarfsfall	E020, FOME verschmutzt. Fotometer mit NH ₃ -Lösung (5%) reinigen, siehe Fotometer reinigen, S. 62.

Hinweis: Es wird automatisch einmal pro Woche eine Verifikation durchgeführt, standardmässig ist diese auf Montag um 06:00 Uhr programmiert. Darauf achten, dass eine Standardflasche mit ausreichend Standardlösung angeschlossen ist.

6.2. Betriebsstopp zwecks Wartung

Über die Funktion «Wartung vorbereiten» wird das gesamte Analysegerät mit Wasser gespült. Es wird empfohlen, diese Funktion auszuführen, bevor Wartungsaufgaben durchgeführt werden.

- 1 Die Option < Wartung vorbereiten > auswählen.
- 2 Den Anweisungen auf dem Bildschirm folgen. (Sauglanzen in Behälter mit Reinstwasser halten).
- 3 Warten, bis die Schlauchpumpe stoppt.
- 4 Probenfluss unterbrechen.
- 5 Sauglanzen in einen Behälter mit Reinstwasser halten.
- 6 Instrument vom Netz trennen.

6.3. Reagenzien auffüllen/austauschen

Der Flüssigkeitsstand in Behälter 4 wird überwacht. Folgende Meldungen werden angezeigt:

Behälter fast leer	Wartung E065 - Reagenzstand niedrig und Restvolumen in % (ab 17% = 340 ml).
Behälter leer	Fehler E022 – Reagenz leer

Gesundheitsrisiko

GEFAHR

- Lesen Sie deshalb unbedingt die Anweisungen zur sicheren Handhabung von Reagenzien in den jeweiligen Materialsicherheits-Datenblättern (MSDS).
- Reagenzien d
 ürfen nur von Personen vorbereitet werden, die über Erfahrung mit gef
 ährlichen Chemikalien verf
 ügen.

Behältereinrichtung

- A Sauglanze ohne Füllstandsensor (Behälter 1-3)
- B Sauglanze mit Füllstandsensor (Behälter 4)
- *C* Füllstandsensor
- D 2-Liter-Marke
- E Reagenzbehälter 1
- F Reagenzbehälter 2
- G Reagenzbehälter 3
- H Reagenzbehälter 4
- I Halter

 Reagenzverbrauch
 Ein 2-Liter-Reagenzbehälter reicht etwa für 1 Betriebsmonat.

 Hinweis: Die übermässige Verwendung der Funktion «Spressingen Verwendung der Funktion»

Hinweis: Die übermässige Verwendung der Funktion «Spülen/ Füllen» oder häufige Durchflussunterbrechungen verkürzen die angegebene Dauer.

AMI Silitrace Ultra

Wartung

Inhalt des Reagenziensets **Reagenz 1:** Beutel 1a und 1b für Behälter 1. Ammoniummolybdat und Natriumhydroxid

Reagenz 2: Flasche 2 für Behälter 2 Schwefelsäure 25 %

Reagenz 3: Beutel 3 für Behälter 3 Oxalsäure-Dihydrat

Reagenz 4: Beutel 4a und Flasche 4b für Behälter 4 Ammoniumeisensulfat-Hexahydrat Schwefelsäure 25 % mit Reinigungsmittel

Hinweis: Niemals konzentrierte Schwefelsäure aus Glasflaschen verwenden.

Persönliche Schutzausrüstung:

Reagenz 3: H302: Gesundheitsschädlich bei Verschlucken. H312: Gesundheitsschädlich bei Hautkontakt. H315: Verursacht Hautreizungen. H318: Verursacht schwere Augenschäden. H373: Kann die Organe schädigen bei längerer oder wiederholter Exposition.

Reagenz 4a:

H315: Verursacht Hautreizungen H319: Verursacht schwere Augenreizung H335: Kann die Atemwege reizen

Reagenz 1b, Reagenz 2, Reagenz 4b: H314: Verursacht schwere Verätzungen der Haut und schwere Augenschäden

P

A-96 250 830 / 030122

Vorbereitung	<i>Hinweis:</i> Bitte beachten Sie bei der Vorbereitung neuer Reagenzien folgende Punkte:
	 Reagenz 3, Oxalsäure löst sich nur langsam, weshalb Sie Reaganz 3 zuerst vorbereiten sollten.
	• Reagenz 1, zuerst Natriumhydroxid hinzufügen (Reagenz 1b).
	 Vor dem Auffüllen von Reagenzien sind alle Behälter mit entmineralisiertem Wasser zu spülen.
Reagenz 3	1 Füllen Sie Behälter 3 mit etwa 1.5 Liter Reinstwasser.
	2 Reagenz 3 zu Behälter 3 hinzufügen.
	3 Deckel auf den Behälter schrauben und gut schütteln.
	4 Behälter bis zur 2-Liter-Marke füllen und erneut schütteln.
Reagenz 1	1 Befüllen Sie Behälter 1 mit etwa 1.5 Liter Reinstwasser.
	2 Zunächst den Inhalt von Beutel 1b (Natriumhydroxid) hinzufügen.
	3 Deckel auf den Behälter schrauben und gut schütteln, bis das Natriumhydroxid aufgelöst ist.
	4 Den Inhalt von Beutel 1a hinzufügen.
	5 Behälter bis zur 2-Liter-Marke füllen und erneut schütteln.
Reagenz 2	1 Befüllen Sie Behälter 2 mit etwa 1.5 Liter Reinstwasser.
	2 Flasche 2 hinzufügen (Schwefelsäure 25 %).
	3 Deckel auf den Behälter schrauben und gut schütteln.
	4 Behälter bis zur 2-Liter-Marke füllen und erneut schütteln.
Reagenz 4	1 Befüllen Sie Behälter 4 mit etwa 1.5 Liter Reinstwasser.
	2 Zunächst den Inhalt von Beutel 4a hinzufügen.
	3 Deckel auf den Behälter schrauben und gut schütteln.
	4 Flasche 4b hinzufügen. Den verbleibenden Schaum in Flasche 4b mit Reinstwasser ausspülen und in den Kanister füllen, bis die 2-Liter-Marke erreicht ist.
	5 Deckel auf den Behälter schrauben und gut schütteln ⇒ Auf der Oberfläche bildet sich etwas Schaum.
Alle Behälter	Die Reagenzfilter stets austauschen (in jedem Reagenziensatz enthalten), wenn neue Reagenzien zubereitet werden. Sauglanzen in die Behälter einsetzen. Achten Sie darauf, dass die Nummer der Sauglanze mit der Nummer des jeweiligen Behälters übereinstimmt.

6.4. Kalibrierung

Menü 3.1 <Wartung><Kalibrierung> auswählen und den Anweisun-gen auf dem Bildschirm folgen. Schaltausgangsstatus während der Kalibrierung:

- Signalausgänge sind auf Halten gesetzt
- Alle Grenzwerte sind deaktiviert

Kalibrierung 3.1.1	
Zustand xxxx	
Fortschritt	
Anhalten mit <enter></enter>	
Kalibrierung 311	
Zustand Synchronisieren	
Zustand Synchronisieren	
Zeitschaltuhr 10 s	
Anhalten mit <enter></enter>	
Kalibrierung 3.1.1	
Zustand Messen	
Zyklus 1	
Fortschritt	
Anhalten mit <enter></enter>	
	Auf [Enter] drücken um den Wert im
Kalibrierung 3.1.1	Kalibrierungsverlauf zu speichern oder
Vorgang beendet	das Menü mit [Exit] verlassen.
Factor xxxx	
Speichern mit <enter></enter>	

6.5. Verifikation

Menü 3.2 <Wartung><Verifikation> auswählen und den Anweisun-gen auf dem Bildschirm folgen. Schaltausgangsstatus während der Extinktion:

- Signalausgänge sind auf Halten gesetzt
- Alle Grenzwerte sind deaktiviert

Verifikation	3.2.1
Zustand	XXXX
Fortschritt	
Anhaltan mit «Enta	
	12
Verifikation	3.2.1
Zustand Synch	nronisieren
Zyklus	1
Zeitschaltuhr	10 s
Anhalten mit <ente< td=""><td>r></td></ente<>	r>
Verifikation	321
Verifikation	3.2.1 Messen
Verifikation Zustand Zvklus	3.2.1 Messen
Verifikation Zustand Zyklus Fortschritt	3.2.1 Messen 1
Verifikation Zustand Zyklus Fortschritt	3.2.1 Messen 1
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente< td=""><td>3.2.1 Messen 1</td></ente<>	3.2.1 Messen 1
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente< td=""><td>3.2.1 Messen 1</td></ente<>	3.2.1 Messen 1
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente Verifikation</ente 	3.2.1 Messen 1 r> 3.2.1
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente Verifikation Vorgang beendet</ente 	3.2.1 Messen 1
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente Verifikation Vorgang beendet Aktueller Wert</ente 	3.2.1 Messen 1 3.2.1 xxx ppb
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente Verifikation Vorgang beendet Aktueller Wert Referenzwert</ente 	3.2.1 Messen 1 3.2.1 xxx ppb xxx ppb
Verifikation Zustand Zyklus Fortschritt Anhalten mit <ente Verifikation Vorgang beendet Aktueller Wert Referenzwert Abweichung:</ente 	3.2.1 Messen 1 3.2.1 xxx ppb xxx ppb xxx%

Auf [Enter] drücken, um den Wert im Verifikationsverlauf zu speichern oder das Menü mit [Exit] verlassen.

6.6. Reag. Hintergrund

Menü 3.3 <Wartung><Background> auswählen und den Anweisungen auf dem Bildschirm folgen.

Schaltausgangsstatus während der Nullpunktbestimmung:

- Signalausgänge sind auf Halten gesetzt
- Alle Grenzwerte sind deaktiviert

Nullpunkt	3.2.1	
Zustand	XXXX	
Fortschritt		
Anhalten mit <ente< th=""><th>r></th><th></th></ente<>	r>	
Nullpunkt	3.2.1	
Zustand	XXXX	
Zyklus	1	
Zeitschaltuhr	10 s	
Anhalten mit <ente< th=""><td>r></td><td></td></ente<>	r>	
Nullpunkt	3.2.1	
Zustand	XXXX	
Zyklus	1	
Fortschritt		
Anhalten mit <enter< th=""><td>r></td><td></td></enter<>	r>	
Nullaundet	204	Auf
Nullpunkt	3.2.1	Null
Vorgang beendet	1 00 1/	Mer
ιναπρατικί	1.00 V	
Speichern mit <ent< th=""><td>er></td><td></td></ent<>	er>	

Auf [Enter] drücken, um den Wert im Nullpunktverlauf zu speichern oder das Menü mit [Exit] verlassen.

6.7. Nullpunktbestimmung

Menü 3.2 <Wartung><Nullpunkt> auswählen und den Anweisungen auf dem Bildschirm folgen.

Schaltausgangsstatus während der Nullpunktbestimmung:

- Signalausgänge sind auf Halten gesetzt
- Alle Grenzwerte sind deaktiviert

Nullpunkt	3.2.1
Zustand	XXXX
Fortschritt	
Anhalten mit <enter></enter>	>
Nullpunkt	3.2.1
Zustand	XXXX
Zyklus	1
Zeitschaltuhr	10 s
Anhalten mit <enter></enter>	`
Nullpunkt	3.2.1
Nullpunkt Zustand	3.2.1
Nullpunkt Zustand Zvklus	3.2.1 XXXX 1
Nullpunkt Zustand Zyklus Fortschritt	3.2.1 xxxx 1
Nullpunkt Zustand Zyklus Fortschritt	3.2.1 xxxx 1
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter></enter>	3.2.1 xxxx 1
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter< td=""><td>3.2.1 XXXX 1</td></enter<>	3.2.1 XXXX 1
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter Nullpunkt</enter 	32.1 XXXX 1 32.1
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter> Nullpunkt Vorgang beendet</enter>	32.1 XXXX 1 3.2.1
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter> Nullpunkt Vorgang beendet Nullpunkt</enter>	3.2.1 XXXX 1 3.2.1 1.00 V
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter< td=""> Nullpunkt Vorgang beendet Nullpunkt</enter<>	3.2.1 xxxx 1 3.2.1 1.00 V
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enter< td=""> Nullpunkt Vorgang beendet Nullpunkt</enter<>	3.2.1 XXXX 1 3.2.1 1.00 V
Nullpunkt Zustand Zyklus Fortschritt Anhalten mit <enters< td=""> Nullpunkt Vorgang beendet Nullpunkt Speichern mit <enter< td=""></enter<></enters<>	3.2.1 XXXX 1 3.2.1 1.00 V

Auf [Enter] drücken, um den Wert im Nullpunktverlauf zu speichern oder das Menü mit [Exit] verlassen.

6.8. Pumpenschläuche auswechseln

Die Schläuche der Schlauchpumpe [D] sind einem minimalen Verschleiss ausgesetzt. Es wird daher empfohlen, die Pumpenschläuche halbjährlich auszutauschen.

Hinweis: Es wird dringend empfohlen, alle Pumpenschläuche auf einmal auszutauschen. Der Austausch nur eines Pumpenschlauchs kann zu ungleichmässiger Dosierung führen.

VORSICHT

Mögliche Verschmutzung der Reagenzien

Werden die Verschlussrahmen während des Betriebs geöffnet, fliessen bereits gemischte Reagenzien zurück in den Behälter und verunreinigen die Reagenzien.

- Deshalb niemals die Verschlussrahmen während des Betriebs öffnen
- Zum Öffnen den Anweisungen unter Betriebsstopp zwecks Wartung, S. 51 folgen

Übersicht

Entfernen der Pumpenschläuche Die Pumpenschläuche lassen sich auf einfachste Weise montieren und demontieren. Gehen Sie wie folgt vor:

- A Pumpengehäuse
- **B** Verschlussrahmen offen
- **C** Rotor
- **D** Pumpenschlauch
- E Pumpeneinlass
- F Pumpenauslass

- 1 Das Instrument gemäss den Anweisungen unter Betriebsstopp zwecks Wartung, S. 51 abschalten.
- 2 Die Schutzkappe entfernen.
- 3 Die Verschlussrahmen [B] zum Öffnen gegen den Uhrzeigersinn drehen.
- 4 Die Pumpenschläuche [D] durch Herausziehen der kompletten Verschlussrahmen [B] vom Rotor [C] entfernen.

Neue Pumpenschläuche installieren

- 1 Die Reagenzschläuche und den Probenschlauch von den alten Pumpenschläuchen trennen und mit den neuen Pumpenschläuchen verbinden
- 2 Die neuen Pumpenschläuche durch Aufschieben der Verschlussrahmen auf den Halter installieren.

Hinweis: Der am nächsten am Gehäuse gelegene Schlauch (Probenschlauch) hat einen Durchmesser von 2.8 mm. Alle anderen Schläuche haben einen Durchmesser von 0.64 mm.

activated for 1.5

- 3 Die Verschlussrahmen verriegeln. Sicherstellen, dass die Verschlussrahmen und die Schläuche senkrecht zur Achse des Rotors ausgerichtet sind.
- 4 Die Sauglanzen in die entsprechenden Behälter einsetzen.
- 5 Die Funktion <System füllen> starten.

6.9. System füllen

Reagenzienschläuche füllen:

- beim ersten Start
- nach dem Auffüllen der Reagenzbehälter
- nach dem Austausch der Pumpenschläuche

Service 3.2.2 System füllen Wartung vorbereiten	Zur Funktion <system füllen=""> des Menüs <wartung>/<service> navigieren. [Enter] drücken.</service></wartung></system>
System füllen 3.2.2.5 Fortschritt	The peristaltic pump is activated for 1. minutes.
Anhalten mit <enter> System füllen 3225</enter>	4 x [Exit] drücken, um zum Bildschirm
Fortschritt	«Betriebsmodus» zurückzukehren.
Abgeschlossen	

6.10. Fotometer reinigen

Zum Reinigen den Fotometer mit Ammoniaklösung (5%) spülen.

VORSICHT

Wenn die optionale Entgasungsmembran installiert ist, muss diese vor dem Spülen mit Ammoniaklösung überbrückt werden. Andernfalls wird die Membran beschädigt.

- 1 Einen Becher mit Ammoniaklösung (5%) füllen.
- 2 Alle Sauglanzen in den Becher stellen.
- 3 Zur Funktion /<Service>/<System füllen> navigieren.
- 4 [Enter] drücken.

6.11. Längere Betriebsunterbrechungen

- 1 Gehen Sie gemäss Kapitel Betriebsstopp zwecks Wartung, S. 51 vor.
- 2 Verschlussrahmen der Schlauchpumpe lockern. Siehe Pumpenschläuche auswechseln, S. 59.

7. Problembehebung

7.1. Fehlerliste

Fehler

Nicht schwerwiegender Fehler. Gibt einen Alarm aus, wenn ein programmierter Wert überschritten wurde.

Diese Fehler sind E0xx (schwarz und fett) gekennzeichnet.

Schwerwiegender Fehler - (Symbol blinkt)

Die Steuerung der Dosiervorrichtung wird unterbrochen. Die angezeigten Messwerte sind möglicherweise falsch. Schwerwiegende Fehler werden 2 Kategorien aufgeteilt:

- Fehler die verschwinden, wenn die korrekten Messbedingungen wieder hergestellt sind (z.B. Probenfluss tief).
 Solche Fehler sind E0xx (orange und fett) gekennzeichnet.
- Fehler die einen Hardwaredefekt des Instruments anzeigen. Solche Fehler sind E0xx (rot und fett) gekennzeichnet.

◀ Fehler oder ★ schwerwiegender Fehler

Fehler noch nicht bestätigt. **Anliegende Fehler 1.1.5** prüfen und Korrekturmassnahmen anwenden.

Zum Menü <Meldungen>/ <Anliegende Fehler> navigieren.

Anliegende Fehler mit <ENTER> quittieren.

⇒ Die Fehler werden zurückgesetzt und in der Meldungsliste gespeichert.

Fehler	Beschreibung	Korrekturmassnahmen
E001	Kieselsäure hoch	 Prozess überprüfen Programmierte Werte in Menü 5.3.1.1.1, p. 100 überprüfen
E002	Kieselsäure tief	 Prozess überprüfen Programmierte Werte in Menü 5.3.1.1.22, p. 100 überprüfen
E003	Permeatfluss hoch	 – Eingangsdruck überprüfen – Probenfluss nachregeln – Programmierte Werte in Menü 5.3.1.2.2.1, p. 101 überprüfen
E004	Permeatfluss tief	 Prozess überprüfen Probenfluss nachregeln Programmierte Werte in Menü 5.3.1.2.2.22, p. 101 überprüfen
E005	Konzentratfluss hoch	 – Eingangsdruck überprüfen – Probenfluss nachregeln – Programmierte Werte in Menü 5.3.1.2.3.1, p. 101 überprüfen
E006	Konzentratfluss tief	 Prozess überprüfen Probenfluss nachregeln Programmierte Werte in Menü 5.3.1.2.3.22, p. 101 überprüfen
E007	SilTrace Temp. hoch	 Service anrufen

Fehler	Beschreibung	Korrekturmassnahmen
E008	SilTrace Temp. tief	 Hinweis: Je nach den Umständen, unter denen dieser Fehler auftritt, verschwindet er entweder von selbst, sobald korrekte Messbedingungen hergestellt sind, oder er muss aktiv bestätigt werden. Wenn der Fehler beim Aufstarten auftritt:
		 In diesem Fall sind in der Regel keine Massnahmen erforderlich. Einfach warten, bis das Fotometer aufgeheizt ist und der Fehler von selbst verschwindet. Bei Raumtemperatur dauert das ungefähr 20 Minuten. Falls der Fehler nach dieser Zeit nicht verschwunden ist, mit den nachfolgend beschriebenen Schritten fortfahren. Wenn der Fehler im Betrieb auftritt: Überprüfen, ob einer oder mehrere fatale Fehler (in dieser Liste orange und rot gekennzeichnet) anliegen. Diese Fehler führen zum Abschalten der Heizung. Die Ursachen beheben und alle fatalen Fehler quittieren. Um die Heizung wieder zu starten, ebenfalls den Fehler E008 quittieren.
E011	Extinktion zu hoch	 Prozess überprüfen Die Schlauchverbindungen auf Lufteintritt überprüfen
E012	Temp. Time-out	 Umgebungstemperatur überprüfen (mind. 5°C) Den Photometerdeckel schliessen Heizelement defekt, den Service anrufen.
E013	Gehäusetemp. hoch	 Gehäusetemperatur und Umgebungstemperatur überprüfen Programmierte Werte in Menü 5.3.1.3, p. 101 überprüfen
E014	Gehäusetemp. tief	 Gehäusetemperatur und Umgebungstemperatur überprüfen Programmierte Werte in Menü 5.3.1.4, p. 101 überprüfen

Fehler	Beschreibung	Korrekturmassnahmen
E015	Pumpengeschw. hoch	 Durchfluss in Reaktionskammer zu langsam Die Schläuche auf Lufteintritt überprüfen. Die Pumpenschläuche ersetzen, siehe Pumpenschläuche auswechseln, p. 59
E016	Pumpengeschw. tief	 Durchfluss in Reaktionskammer zu schnell Die Schläuche der PerlClip-Pumpe prüfen (Schlauchgrössen) Schlauchverbindungen prüfen
E017	Ueberw.zeit	 Steuergerät oder Programmierung im Menü <installation>/<schaltkontakte>/Schaltausgang</schaltkontakte></installation> 1/2, siehe 5.3.2 und 5.3.3, p. 101
E018	Reagenzienpumpe	 Verdrahtung der Pumpe überprüfen, PeriClip-Version überprüfen (Diagnose/ Identifikation/Peripherie) Den Service anrufen
E019	SilTrace	 Verdrahtung der Pumpe überprüfen, SilTrace-Version überprüfen (Diagnose/ Identifikation/Peripherie) Den Service anrufen
E020	FOME verschmutzt	 Küvette verschmutzt Die Linsen der Küvette mit einem Tuch reinigen. Die Küvette reinigen, siehe Die Küvette ersetzen, p. 73.
E021	Kein Signal	 Eine Fehlgeschlagene Peak-Erkennung kann verursacht werden durch: 1) unterbrochenen Lichtpfad 2) kein Wasser/zu viel Luft in der Reaktions- kammer Überprüfen, ob die Reaktionskammer verstopft ist und falls nötig ersetzen, siehe Die Reaktionskammer ersetzen, p. 69. Die Positionierung der Küvette überprüfen. Sicherstellen dass sie bis an den Anschlag in den Einschub geschoben ist. Schlauchverbindungen überprüfen

Fehler	Beschreibung	Korrekturmassnahmen
E022	Reagenz leer	 Reagenzien nachfüllen, siehe Reagenzien auffüllen/austauschen, p. 52.
E024	Schalteingang aktiv	 Keine Massnahme erforderlich Diese Meldung wird angezeigt, wenn "Fehler = Ja" gesetzt ist, siehe 5.3.4, p. 105.
E025	Rovalve (6-Weg- Ventil)	 Die Kabelverbindung pr üfen, siehe Anschlussdiagramm, p. 29 Das 6-Weg-Ventil ersetzen, siehe Das 6-Wege- Ventil ersetzen, p. 71
E026	IC LM75	 Den Service anrufen
E028	Ausgang unterbrochen	 Verdrahtung an Signalausgängen 1 und 2 pr üfen
E030	EEProm Front-end	 Den Service anrufen
E031	Eichung Signalausg.	 Den Service anrufen
E032	Falsches Front-End	 Den Service anrufen
E033	Power-on	– keine, normaler Status
E034	Power-down	– keine, normaler Status

7.2. Problemlösungsliste

Hintergrund- Kalibrierung schlägt fehl	Problem	Mögliche Ursachen
	Stabilitätskriterien nicht erfüllt nach 16 Zyklen	 Luft in der Reaktionskammer Lose Schlauchverbindungen Reagenzverbrauch zwischen den Kanistern ungleich (Positionierung der Verschlussrahmen der PeriClip-Pumpe) Unzureichende Einlaufzeit der Membran
	Zeitüberschrei- tung	Nach 600 s keinen Peak gefunden • Peristaltikpumpe überprüfen • Schlauchverbindungen überprüfen • Positionierung der Küvette überprüfen
Nullpunkt- bestimmung schlägt fehl	Problem	Mögliche Ursachen
	Stabilitätskriterien nicht erfüllt nach 16 Zyklen	 Luft in der Reaktionskammer Lose Schlauchverbindungen Reagenzverbrauch zwischen den Kanistern ungleich (Positionierung der Verschlussrahmen der PeriClip-Pumpe) Überprüfen, ob Reagenz 1 in den Abfluss fliesst
	Zeitüberschrei- tung	Nach 600 s keinen Peak gefunden Peristaltikpumpe überprüfen Schlauchverbindungen überprüfen Positionierung der Küvette überprüfen
Nullpunkt tiefer als Hintergrund	Problem	Possible Reasons
	Nullpunkt tiefer als Hintergrund	 Nullpunktbestimmung veraltet Magnetventil defekt Schlechte Membranleistung Unzureichende Einlaufzeit der Membran

7.3. Die Reaktionskammer ersetzen

Ein Ersatz der Reaktionskammer kann erforderlich sein, wenn: Fehler 12, <Temp. Time-out> oder Fehler 21, <Kein Signal> angezeigt wird

Um die Reaktionskammer zu ersetzen, wie folgt vorgehen:

- 1 Instrument gemäss Betriebsstopp zwecks Wartung, p. 51 ausschalten.
- 2 Die Küvette [C] aus der Photometer-Einheit ziehen.
- 3 Alle Schlauchverbindungen vom Anschlussfeld [D] trennen.
- 4 Am Deckel die 4 Befestigungsschrauben [A] lösen und entfernen.
- 5 Die Abdeckung [B] von der Photometereinheit entfernen.

- E Küvettengehäuse
- F Reaktionskammer
- **G** Befestigungsschraube
- **H** Isolierscheibe

6 Die Befestigungsschraube [G] der Reaktionskammer lösen.

7 Die Reaktionskammer aus dem Photometergehäuse entfernen.

Die neue Reaktionskammer installieren

- 1 Die neue Reaktionskammer in das Photometergehäuse einsetzen und die Befestigungsschraube [G] anziehen
- 2 Den Deckel [B] auf das Photometer setzen und die 4 Befestigungsschrauben [A] des Deckels anziehen.
- 3 Die Küvette in den Einschub des Küvettengehäuses schieben.
- 4 Alle Schläuche gemäss dem untenstehenden Diagramm mit dem Anschlussfeld verbinden.

7.4. **Das 6-Wege-Ventil ersetzen**

VORSICHT

Das 6-Wege-Ventil entfernen

Ein Ersatz des 6-Wege-Ventils kann erforderlich sein, wenn Fehler 25 <Rovalve> angezeigt wird.

Gehäuse des 6-Wege-Ventils sichtbar sind.

Niemals die 4 Innensechskantschrauben [D] lösen, die auf dem

- **B** Befestigungsschraube Ventil
- A C Inbusschlüssel 2.5 mm
 - **D** Befestigungsschraube Ventil

Um das 6-Wege-Ventil vom Gehäuse zu entfernen, wie folgt vorgehen:

- 1 Das Instrument gemäss Betriebsstopp zwecks Wartung, p. 51 ausschalten.
- 2 Alle Schläuche vom 6-Wege-Ventil entfernen.
- 3 Alle Blindstopfen vom 6-Wege-Ventil entfernen.
- 4 Die Ventil-Befestigungsschrauben [B] mit dem Inbusschlüssel [C] lösen.
- 5 Das 6-Wege-Ventil entfernen

AMI Silitrace Ultra Problembehebung

- B 6-Wege-Ventil
- **C** Befestigungsschraube
- D Ventilwelle mit Mitnehmerbolzen
- E Positionierungsschraube
- **F** Einschubschlitz
- **G** Führungsloch

Alle ungenutzten Eingänge mit den beigelegten Blindstopfen [A] verschliessen. Wie folgt vorgehen:

- Sicherstellen, dass die Ventilwelle mit Mitnehmerbolzen [D] am 1 Einschubschlitz [F] ausgerichtet ist.
- 2 Das 6-Wege-Ventil so installieren, dass die Ventilwelle mit Mitnehmerbolzen in den Einschubschlitz der Motorwelle passt und die Positionierungsschraube [E] in das Führungsloch [G] passt.
- 3 Das 6-Wege-Ventil mit den Befestigungsschrauben [C] am Ventilgehäuse befestigen. Dazu den beiliegenden 2.5 mm Inbusschlüssel verwenden.
- 4 Alle Schläuche an den entsprechenden Ein-/Ausgängen des 6-Wege-Ventils [B] anschliessen, siehe Die Reagenzschläuche auswechseln, p. 74.
- 5 Die Blindstopfen in die ungenutzten Eingänge des 6-Wege-Ventils schrauben.
- 6 Das Instrument einschalten und <Wartung>/<Service>/<System füllen> auswählen.
- 7 Alle Schlauchverbindungen auf Dichtheit prüfen.

7.5. Die Küvette ersetzen

Ein Ersatz der Küvette kann erforderlich sein, wenn: Fehler 20 <FOME verschmutzt> angezeigt wird.

- A Photometermodul
- B Küvette

A PhotometermodulB Küvette

Um die Küvette auszutauschen, wie folgt vorgehen:

- 1 Das Instrument gemäss Betriebsstopp zwecks Wartung, p. 51 ausschalten.
- 2 Alle Schläuche von der Küvette entfernen.
- 3 Die Küvette aus dem Photometermodul ziehen.
- 4 Die neue Küvette bis an den Anschlag in den Einschub des Photometermoduls schieben.
- 5 Alle Schläuche mit der Küvette verbinden, siehe Die Reagenzschläuche auswechseln, p. 74.
- **6** Das Instrument einschalten und <Wartung>/<Service>/<System füllen> auswählen.
- 7 Eine Küvettenfaktorbestimmung durchführen, siehe 3.5.3, p. 93.

7.6. Die Reagenzschläuche auswechseln

Schlauchnummerierung

AMI Silitrace Ultra Problembehebung

Nr.	from	to	Length
1	Kanister 1 [K]	Peristaltikpumpe [O] Eingang 2	1200 mm
2	Kanister 2 [L]	Peristaltikpumpe [O] Eingang 3	1200 mm
3	Kanister 3 [M]	Peristaltikpumpe [O] Eingang 4	1200 mm
4	Kanister 4 [N]	Peristaltikpumpe [O] Eingang 5	1200 mm
1A	Peristaltikpumpe [O] Ausgang 2	Magnetventil [P] unten	280 mm
1B	Magnetventil [P] oben	Reaktionskammer [C] 1B	125 mm
2	Peristaltikpumpe Ausgang 3	Reaktionskammer [C] 2	400 mm
3	Peristaltikpumpe Ausgang 4	Reaktionskammer [C] 3	400 mm
4	Peristaltikpumpe Ausgang 5	Reaktionskammer [C] 4	400 mm
01	Durchflusszelle tiefer Durch- fluss [I]	6-Wege-Ventil [H] 1	340 mm
14	Durchflusszelle hoher Durchfluss [J]	6-Wege-Ventil [H] 6	440 mm
02	6-Wege-Ventil [H] 7	Peristaltikpumpe Eingang 1 (Durchmesser 2.8 mm)	340 mm
03	Peristaltikpumpe Ausgang 1	Reaktionskammer [C] 03	400 mm
04	Reaktionskammer [C] 04	Küvette [D] 04	160 mm

Nr.	from	to	Length
05	Standardflasche [A]	6-Wege-Ventil [I] 5	800 mm
11	Küvette [D] (Siphon- schlauch)	unterer Entlüftungsblock	470 mm
	A B C B	Den Siphonschlauch [A] mit den beiden Schrauben [B] am unte- ren Entlüftungsblock [C] befesti- gen.	
12	Küvette [D]	oberer Entlüftungsblock	300 mm

7.7. Das Magnetventil reinigen

Magnetventil ausbauen

Das Magnetventil ist auszubauen, falls es nicht mehr schaltet oder verstopft ist.

1 Instrument gemäss den Anweisungen unter Betriebsstopp zwecks Wartung, p. 51 abschalten.

2 Mutter [A] lösen.

3 Magnetspule [B] aus dem Ventilkörper [C] nehmen.

4 Schrauben des Ventilkörpers mit einem 2,5-mm-Inbusschlüssel [D] lösen.

Zusammen- Magnetventil in umgekehrter Reihenfolge wieder zusammenbauen. bauen

7.8. Das Gehäuse der Peristaltikpumpe öffnen

Für einige elektrische Anschlüsse (z.B. beim Austausch von Sauglanzen) muss das Gehäuse der Peristaltikpumpe geöffnet werden. Gehen Sie dazu wie folgt vor:

- 1 Den Analysator gemäss Betriebsstopp zwecks Wartung, p. 51 ausschalten.
- 2 Die Schutzkappe und alle Pumpenschläuche wie unter Entfernen der Pumpenschläuche, p. 60 beschrieben entfernen.
- 3 Die 4 Schrauben des Peristaltikpumpengehäuses lösen und die Abdeckung entfernen.
- 4 Den Motorstecker [A] abziehen.

A Motorstecker

- 5 Das Kabel durch eine der PG7-Verschraubungen in das Gehäuse einführen.
- 6 Das Kabel gemäss dem Anschlussdiagramm, p. 29 an den Anschlussklemmenblock der Peristaltikpumpe anschliessen.
- 7 In umgekehrter Reihenfolge wieder zusammenbauen.

7.9. Die Sicherungen auswechseln

GEFAHR

Fremdspannung

Über eine externe Stromversorgung gespeiste und an Schaltkontakt 1 oder 2 bzw. am Sammelstörkontakt angeschlossene Geräte können elektrische Schläge verursachen.

- Vor der Fortführung der Installation müssen Geräte, die an folgende Kontakte angeschlossen sind, vom Netz getrennt werden:
 - Schaltausgang 1
 - Schaltausgang 2
 - Sammelstörkontakt

Bei durchgebrannten Sicherungen vor dem Auswechseln zuerst die Ursache ermitteln.

Verwenden Sie eine Pinzette oder Spitzzange zum Ausbau der defekten Sicherung.

- A 1,6 AT/250 V Instrumenten-Stromversorgung
- **B** 1,0 AT/250 V Schaltausgang 1
- C 1,0 AT/250 V Schaltausgang 2
- D 1,0 AT/250 V Sammelstörkontakt
- *E* 1,0 AF/125 V Signalausgang 2
- F 1,0 AF/125 V Signalausgang 1
- G 1,0 AF/125 V Signalausgang 3

8. Programmübersicht

Erklärungen zu den einzelnen Menüparametern finden Sie unter Programmliste und Erläuterungen, p. 87.

- Menü 1 Meldungen informiert über anstehende Fehler und Wartungsaufgaben und zeigt die Fehlerhistorie. Passwortschutz möglich. Es können keine Einstellungen geändert werden.
- Menü 2 Diagnose ist jederzeit für alle Anwender verfügbar. Kein Passwortschutz. Es können keine Einstellungen geändert werden.
- Menü 3 Wartung ist für den Kundendienst vorgesehen: Kalibrierung, Simulation der Ausgänge und Einstellung von Uhrzeit/Datum. Bitte per Passwort schützen.
- Menü 4 Betrieb ist für den Anwender vorgesehen und ermöglicht die Einstellung von Grenzwerten, Alarmwerten usw. Die Voreinstellung erfolgt im Menü Installation (nur für den Systemtechniker). Bitte per Passwort schützen.
- Menü 5 Installation dient zur Programmierung von allen Einund Ausgängen, Messparametern, Schnittstelle, Passwörtern etc. Menü für den Systemtechniker. Passwort dringend empfohlen.

8.1. Meldungen (Hauptmenü 1)

Anliegende Fehler 1.1*	Anliegende Fehler	1.1.5*	*Menünummern
Wartungsliste 1.2*	Wartungsliste	1.2.5*	
Meldungsliste 1.3*	Eintrag Datum/Uhrzeit	1.3.1*	
1.0	Datumiomizen		

8.2. Diagnose (Hauptmenü 2)

Identifikation	Bezeichnung	AMI Silitrace Ultra		* Menünummern
2.1*	Version	V6.10-05/16		
	Peripherie	PeriClip		
	2.1.3	RoValve		
		SiliTrace		
	Werksprüfung	Gerät	2.1.3.1*	
	2.1.4*	Hauptplatine		
	Betriebszeit	Jahre, Tage, Stunden	, Minuten, Sekunden	2.1.4.1*
	2.1.5*			
Sensoren	SilTrace	Temp.		
2.2*	2.2.1*	PWM		
		Fotometer	Messwert	2.2.1.3.1*
		2.2.1.3*	(Rohwert)	
			Extinktion	
			FOME Mean	
	Verschiedenes	Gehäusetemp.	2.2.2.1*	
	2.2.2*	Zustand	2.2.2*	
	History	Nullpunkt History	Nummer	2.2.3.1.1*
	2.2.3*	2.2.3.1*	Datum, Zeit	
			Nullpunkt	
		Kal. History	Nummer	2.2.3.2.1*
		2.2.3.2*	Datum, Zeit	
			Faktor	
		Verif. History	Nummer	2.2.3.3.1*
		2.2.3.3*	Datum, Zeit	
			Messwert	
			Referenzwert	
			Abweichung	
		Hintergrund Hist.	Nummer	2.2.3.4.1*
		2.2.3.4*	Datum, Zeit	
			Hintergrund	
			Konz. Faktor	
	Zyklusdiagnose	Letzte Dauer P2P		
	2.2.4*	Zeitzähler P2P		
		Pumpengeschw.		
		Zyklus Anpassung		

AMI Silitrace Ultra

Programmübersicht

Probe	ID Probe	2.3.1*		* Menünummern
2.3*	Probenfluss	Permeatfluss	2.3.2.1*	
	2.3.2*	(Rohwert)		
		Konzentratfluss		
		(Rohwert)		
		Konz. Faktor		
E/A Zustände	Sammelstörkontakt	2.4.1*		
2.4*	Schaltausgang 1 und 2	2.4.2*		
	Schalteingang			
	Signalausgang 1 und 2			
Schnittstelle	Protocoll	2.5.1*		(nur mit RS485-
2.5*	Baudrate			Schnittstelle)

8.3. Wartung (Hauptmenü 3)

Kalibrierung		
3.1*		
Verifikation		
3.2*		
Reag. Hintergrund		
3.3*		
Nullpunkt		
3.4		
Service	System füllen	Fortschritt
3.5*	3.5.1*	
	Wartung vorbereiten	Fortschritt
	3.5.2*	
	Best. Küvettenfaktor	Fortschritt
	3.5.3*	

84

Simulation	Sammelstörkontakt	3.6.1*
3.6*	Schaltausgang 1	3.6.2*
	Schaltausgang 2	3.6.3*
	Signalausgang 1	3.6.4*
	Signalausgang 2	3.6.5*
	Magnetventil	3.6.6*
	Drehventil	3.6.7*
Uhr stellen	(Datum), (Zeit)	
3.7*		

8.4. Betrieb (Hauptmenü 4)

Sensoren	Filterzeitkonst.	4.1.1*		
4.1*	Haltezeit n. Kal.	4.1.2*		
Schaltkontakte	Sammelstörkontakt	Alarm Si 1	Alarm hoch	4.2.1.1.1*
4.2*	4.2.1*	4.2.1.1*	Alarm tief	4.2.1.1.26*
			Hysterese	4.2.1.1.36*
			Verzögerung	4.2.1.1.46*
	Schaltausgang 1/2	Sollwert	4.2.x.100*	
	4.2.2* and 4.2.3*	Hysterese	4.2.x.200*	
		Verzögerung	4.2.x.30*	
	Schalteingang	Aktiv	4.2.4.1*	
	4.2.4*	Signalausgänge	4.2.4.2*	
		Ausgänge/Regler	4.2.4.3*	
		Störung	4.2.4.4*	
		Verzögerung	4.2.4.5*	
Logger	Logintervall	4.3.1*		
4.3*	Logger löschen	4.3.2*		

* Menünummern

8.5. Installation (Hauptmenü 5)

Sensoren	Messparameter	Kal./Verif.	Standard	5.1.1.1.1*
5.1*	5.1.1*	5.1.1.1*	Parameter	Startzeit
			5.1.1.1.2*	Montag
				Dienstag
				Mittwoch
				Donnerstag
				Freitag
				Samstag
				Sonntag
		Autom. Hintergrund	Autom. Hintergrund	5.1.1.2.1*
		5.1.1.2*	Startzeit	5.1.1.2.2
		Küvettenfaktor		
		5.1.1.3*		
	Probe	Durchfluss Permeat	Offset	5.1.2.1.1*
	5.1.2*	5.1.2.1*	Steilheit	5.1.2.1.2*
		Durchfluss Konzentrat	Offset	5.1.2.2.1*
		5.1.2.2*	Steilheit	5.1.2.2.2*
Signalausgänge	Signalausgang 1/2	Parameter	5.2.x.1*	
5.2*	5.2.1* - 5.2.2*	Stromschleife	5.2.x.2*	
		Funktion	5.2.x.3*	
		Skalierung	Skalenanfang	5.2.x.40.10/10*
		5.2.x.40	Skalenende	5.2.x.40.20/20*
Schaltkontakte	Sammelstörkontakt	Alarm Kieselsäure	Alarm hoch	5.3.1.1.1*
5.3*	5.3.1*	5.3.1.1*	Alarm tief	5.3.1.1.25
			Hysterese	5.3.1.1.35
			Verzögerung	5.3.1.1.45
		Probenfluss	Probenalarm	5.3.1.2.1*
		5.3.1.2*	Permeatfluss	Alarm hoch
			5.3.1.2.2	Alarm tief
			Konzentratfluss	Alarm hoch
			5.3.1.2.3	Alarm tief
		Gehäusetemp. hoch	5.3.1.3*	
		Gehäusetemp. tief	5.3.1.4*	

AMI Silitrace Ultra Programmübersicht

	Schaltausgang 1/2	Funktion	5.3.2.1-5.3.3.1*	* Menünummern
	5.3.2* and 5.3.3*	Parameter	5.3.2.20-5.3.3.20*	
		Sollwert	5.3.2.302-5.3.3.301	*
		Hysterese	5.3.2.402-5.3.3.401	*
		Verzögerung	5.3.2.50-5.3.3.50*	
	Schalteingang	Aktiv	5.3.4.1*	
	5.3.4*	Signalausgänge	5.3.4.2*	
		Ausgänge/Regler	5.3.4.3*	
		Störung	5.3.4.4*	
		Verzögerung	5.3.4.5*	
Diverses	Sprache	5.4.1*		
5.4*	Werkseinstellung	5.4.2*		
	Firmware laden	5.4.3*		
	Passwort	Meldungen	5.4.4.1*	
	5.4.4*	Wartung	5.4.4.2*	
		Betrieb	5.4.4.3*	
		Installation	5.4.4.4*	
	ID Probe	5.4.5*		
	Überw. Signalausgang	5.4.6*		
Schnittstelle	Protokoll	5.5.1*		(nur mit RS485-
5.5*	Geräteadresse	5.5.21*		Schnittstelle)
	Baudrate	5.5.31*		
	Parität	5.5.41*		

9. Programmliste und Erläuterungen

1 Meldungen

1.1 Anliegende Fehler

1.1.5 Bietet eine Liste mit aktuellen Fehlern und Statuszuständen (aktiv, bestätigt). Wird ein aktiver Fehler bestätigt, öffnet sich der Sammelstörkontakt wieder. Gelöschte Fehler werden in die Meldungsliste verschoben.

1.2 Wartungsliste

1.2.5 Zeigt notwendige Wartungsarbeiten wie die Vorbereitung neuer Reagenzien.

1.3 Meldungsliste

1.3.1 Anzeige des Fehlerverlaufs: Fehlercode, Datum und Uhrzeit des Problems sowie Status (aktiv, bestätigt, geklärt). Es werden 65 Fehler gespeichert. Anschliessend werden die ältesten Fehler gelöscht, um Speicherplatz freizugeben (Zirkularpuffer).

2 Diagnose

Im Diagnose-Modus können Werte angezeigt, jedoch nicht geändert werden.

2.1 Identifikation

o Bezeichnung: Bezeichnung des Instruments.
 o Version: Firmware des Instruments (z. B. V6.20-06/16).

2.1.3 Peripheriegeräte:

- 2.1.3.1 o *PeriClip 1:* Firmware der Schlauchpumpe (z. B. 1.06).
 - o RoValve: Firmware des Drehventils (6-Weg-Ventil) (z. B. 1.60).
 - o *SilTrace*: Firmware der Heizvorrichtung im Photometermodul (z. B. 1.00).
 - 2.1.4 Werksprüfung: Datum der Prüfung von Instrument und Mainboard
 - 2.1.5 Betriebszeit: Jahre, Tage, Stunden, Minuten, Sekunden

2.2 Sensoren

2.2.1 SilTrace (Fotometermodul):

o *Temp:*. Die Temperatur in der Reaktionskammer in °C o *PWM*: Heizleistung in Prozent (100 % beim Start)

2.2.1.3 Fotometer:

- o *Messwert*: zeigt das Fotometersignal in ppb an. (*Rohwert*): zeigt das tatsächliche Fotometersignal in V an.
- o Extinktion:

$$A = -\log_{10} \left(\frac{FOME \text{ mean}}{zero} \right)$$

o *FOME-Mittelwert*: Rohsignal in V, wird während T2 (Pumpe angehalten) gemessen, um die Konzentration zu berechnen.

2.2.2 Verschiedenes:

- o *Gehäusetemp.:* aktuelle Temperatur in [°C] innerhalb des Messumformers.
- o *Gerätezustand:* Zeigt den aktuell laufenden Vorgang auf dem Instrument an.
- WARMUP Das Instrument wird nach dem Start oder nach der Wiederherstellung nach einem schwerwiegenden Fehler aufgewärmt.
- WAITRDY Im Instrument ist ein schwerwiegender Fehler aufgetreten – Pumpe und Heizvorrichtung sind ausgeschaltet. Das Instrument bleibt in diesem Zustand, bis der schwerwiegende Fehler akzeptiert oder eigenständig gelöscht wird.
- WAITFLOW Das Instrument gibt einen Alarm (E010) «Niedriger Probenfluss» aus. In diesem Fall stoppt die Pumpe, aber die Heizvorrichtung bleibt eingeschaltet. Es bleibt in diesem Zustand, bis der Probenfluss wiederhergestellt wird.
- FLUSH/ Vor und nach Durchführung einer Hintergrundkalibrierung, Kalibrierung oder Verifikation und nach der Wiederherstellung nach einem Alarm wird das Instrument gespült.

Messzyklus

FIND PEAK Schritt 1 der Messung:

Das Instrument befindet sich im Messmodus und wartet auf den Spitzenwert.

- WAIT T1 Schritt 2 der Messung: Das Instrument befindet sich im Messmodus, der Spitzenwert wurde ermittelt und Fotometer, Entlüftungsschlauch und Syphonschlauch werden gefüllt. Siehe Fluidik, S. 12.
- WAIT T2 Schritt 3 der Messung: Das Instrument befindet sich im Messmodus und wartet auf die Stabilisierung. Pumpe hält an.
- WAIT T3 Schritt 4 der Messung: Das Instrument befindet sich im Messmodus, FOME-Mittelwert wird aufgezeichnet (nach diesem Status geht das Instrument zurück zum Status FIND PEAK). Die Pumpe ist aus.

Kalibrierung, Verifikation, Nullmessung oder Stichprobenverfahren

- CAL INIT Eine Hintergrundkalibrierung, Kalibrierung, Verifikation oder Nullmessung wurde gestartet.
- CAL END Eine Hintergrundkalibrierung, Kalibrierung, Verifikation oder Nullmessung wurde beendet oder abgebrochen.

Service-Funktionen

- FILL INIT Service-Funktion «System füllen» oder «Wartung vorbereiten» wurde gestartet (immer manuell).
 - FILL Das Instrument füllt das System.
 - STOP Das Instrument hat die Funktionen «System füllen» oder «Wartung vorbereiten» abgeschlossen. Die Pumpe stoppt, die Heizvorrichtung bleibt eingeschaltet.

2.2.3 Verlauf

2.2.3.1 Nullpunkt-Verlauf

- 2.2.3.1.1 o Anzahl: Zähler der Nullkalibrierungen o Datum, Uhrzeit: Datum und Uhrzeit der Durchführung von Nullkalibrierungen
 - Null: Messwert in V der Probe ohne Reagenz 1, das zur F\u00e4rbung der Probe dient. Ein zu hoher Wert kann zum Fehler «FOME verschmutzt» f\u00fchren.

2.2.3.2 Kal. History:

- 2.2.3.2.1 o Anzahl: Zähler der Standardkalibrierungen.
 - o *Datum, Uhrzeit:* Datum und Uhrzeit der Durchführung von Standardkalibrierungen.
 - o Faktor: Korrekturfaktor für die Kalibrierungskurve.

2.2.3.3 Verif. Verlauf

- 2.2.3.3.1 o Anzahl: Zähler der Verifikationen.
 - o *Datum, Uhrzeit:* Datum und Uhrzeit der Durchführung der Verifikation.
 - o Meas. Wert: Messwert der Probe in ppb.
 - o *Referenzwert:* Kieselsäurekonzentration in ppb der verwendeten Standardlösung.
 - o Abweichung: Abweichung zwischen zwei Messungen in %.

2.2.3.4 Hintergrund Hist.

- o Anzahl: Zähler der Hintergrundmessungen.
- o Datum, Uhrzeit: Datum und Uhrzeit der Hintergrundmessung.
- o *Hintergrund:* Gemessener Wert in V des Permeats mit farbbildendem Reagenz.
- o Konzentrationsfaktor: Verteilungsverhältnis zwischen dem Gesamtstrom und dem Konzentratstrom.

AMI Silitrace Ultra Programmliste und Erläuterungen

2.2.4 Zyklusdiagnose

- o Letzte Dauer P2P: Intervall zwischen zwei Spitzenwerten
- o Zeitzähler P2P: Anzeige der aktuellen P2P-Dauer
- o *Pumpengeschw*.: Anzeige des aktuellen Geschwindigkeitscodes der Pumpe (0 30)
- o *Zyklus Anpassung:* Wenn die Pumpengeschwindigkeit ein bestimmtes Zeitlimit 3 Mal überschreitet, wird die Pumpengeschwindigkeit neu angepasst. <Zyklen Anpassung> zeigt, wie viele Zyklen bis zu einer Anpassung übrig sind. (0-3)

2.3 Probe

o *ID Probe:* zeigt die zugewiesene Probenkennung. Diese wird vom Bediener zur Kennzeichnung des Standorts der Probe festgelegt.

2.3.2 Probenfluss:

- o Probenfluss Permeat: Anzeige des Permeatflusses in [l/h] (Rohwert): Anzeige des Permeatflusses in [Hz]
- Probenfluss Konzentrat: Anzeige des Konzentratflusses in [l/h] (Rohwert): Anzeige des Konzentratflusses in [Hz]
- o Konzentrationsfaktor: Zeigt das Verteilungsverhältnis zwischen Gesamt- und Konzentratfluss an.

2.4 E/A-Zustände

Zeigt den tatsächlichen Status aller Ein- und Ausgänge.

- 2.4.1 o Sammelstörkontakt: Aktiv oder inaktiv.
 - o Schaltausgang 1 und 2: Aktiv oder inaktiv.
 - o Schalteingang: offen oder geschlossen
 - o Signalausgang 1 und 2: Tatsächliche Stromstärke in [mA]
 - o Signalausgang 3 (Option): Tatsächliche Stromstärke in [mA]

2.5 Schnittstelle

2.5.1 Schnittstelle: Nur verfügbar, wenn optionale Schnittstelle installiert wurde. Zeigt die programmierten Kommunikationseinstellungen.

3 Wartung

3.1 Kalibrierung

- 3.1.5 Während der Kalibrierung wird eine Lösung mit einer bekannten Kieselsäurekonzentration (Standardlösung) gemessen und der Messwert mit dem Referenzwert der Standardlösung verglichen (eingestellt unter 5.1.1.1, S. 95). Das Instrument legt dann den Kalibrierungsfaktor fest, um die Fotometerempfindlichkeit anzupassen. Es wird empfohlen, eine Kalibrierung durchführen:
 - beim ersten Start
 - nach dem Austausch der Pumpenschläuche
 - nach dem Austausch der Küvette

Alle Kalibrierungen werden im Kalibrierungsverlauf gespeichert.

3.2 Verifikation

3.2.5 Während der Verifikation wird eine Lösung mit einer bekannten Kieselsäurekonzentration (Standardlösung) gemessen und der Messwert mit dem Referenzwert der Standardlösung verglichen. Die Abweichung wird in Prozent angegeben. Anders als bei der Kalibrierung verändert eine Verifikation nicht den Kalibrierungsfaktor. Es wird empfohlen, die Systemleistung durch eine automatische wöchentliche Verifikation (Standardeinstellung) zu kontrollieren. Alle Verifikationen werden im Verifikationsverlauf gespeichert.

3.3 Reag. Hintergrund

3.3.5 Die in den Kanistern gelagerten Reagenzien enthalten geringe Mengen an Kieselsäure. Die Hintergrundkalibrierung eliminiert den Einfluss dieser kleinen Mengen an Kieselsäure auf die Messung. Es wird empfohlen, eine automatische tägliche Hintergrundkalibrierung zu programmieren (Standardeinstellung).

3.4 Nullpunkt

3.4.5 Zur Bestimmung des elektronischen Offsets und der Lichtintensität des Fotometers wird die Probe ohne Zusatz des farbgebenden Reagenz 1 gemessen. Diese Funktion dient als Diagnosewerkzeug und kann nur manuell gestartet werden.

3.5 Service

3.5.1 System füllen

3.5.1.5 Die Reagenzpumpe wird aktiviert und alle Schläuche vom Behälter bis zum Küvettenauslass werden gefüllt.

3.5.2 Wartung vorbereiten

Nach dem Start dieser Funktion werden alle Schläuche gespült und geleert.

Hinweis: Befolgen Sie die Anweisungen auf dem Bildschirm sorgfältig, andernfalls werden die Reagenzien in den Behältern mit den bereits gemischten Reagenzien verunreinigt.

3.5.3 Bestimmung Küvettenfaktor

Der Küvettenfaktor ist für jede Kombination aus Fotometer und Küvette einzigartig. Der Faktor wird werkseitig eingestellt und in einem geschützten Speicherbereich hinterlegt (d. h. er wird bei einem vollständigen Zurücksetzen des Systems oder durch ein Upgrade der Firmware nicht gelöscht).

Wird die Küvette oder der Fotometer ausgetauscht, muss der Küvettenfaktor erneut bestimmt werden.

3.6 Simulation

Um den Wert eines Schaltausgangs anzuzeigen,

- Sammelstörkontakt
- Schaltausgang 1 und 2
- Signalausgang 1 und 2:

mit der Taste [____] oder [____] auswählen.

<Enter> drücken.

Den Wert/Zustand des ausgewählten Objekts mit den Tasten [____] oder [____] ändern.

⇒Der Wert wird mit Hilfe des Schalt-/Signalausgangs simuliert.

- 3.6.1 Sammelstörkontakt:
- 3.6.2 Schaltausgang 1:
- 3.6.3 Schaltausgang 2:
- 3.6.4 Signalausgang 1:
- 3.6.5 Signalausgang 2:
- 3.6.6 Magnetventil
- 3.6.7 Drehventil:
- 3.6.8 Pumpe:

- *törkontakt:* Aktiv oder inaktiv.
 - Aktiv oder inaktiv.
 - Aktiv oder inaktiv
 - Tatsächliche Stromstärke in mA
 - Tatsächliche Stromstärke in mA
 - Aktiv oder inaktiv
 - Position 1 bis 6
 - Aktiv oder inaktiv

Werden 20 min lang keine Tasten gedrückt, schaltet das Instrument wieder in den Normalmodus. Mit Verlassen des Menüs werden alle simulierten Werte zurückgesetzt.

3.7 Zeit einstellen

Zum Einstellen von Datum und Uhrzeit.

4 Betrieb

4.1 Sensoren

- 4.1.1 Filterzeitkonstante: Zum Abflachen von Störsignalen. Je grösser die Filterzeitkonstante, desto langsamer reagiert das System auf geänderte Messwerte. Bereich: 5 – 300 s
- 4.1.2 Haltezeit n. Kal.: Verzögerung, die die Stabilisierung des Instruments nach der Kalibrierung ermöglicht. Während der Kalibrierung plus Verzögerungszeit werden die Signalausgänge (auf dem letzten Wert) eingefroren, Alarm- und Grenzwerte sind nicht aktiv. Bereich: 0 – 6000 s

4.2Schaltkontakte

Siehe Schaltkontakte, S. 31.

4.3 Logger

Das Gerät verfügt über einen internen Logger. Die Logger-Daten können auf einen PC über einen USB-Stick kopiert werden, falls die optionale USB-Schnittstelle installiert ist.

Der Logger kann ca. 1500 Datensätze speichern. Die Datensätze bestehen aus: Datum, Zeit, Alarmen, Messwert(en), Temperatur, Fluss, Extinktion und Pumpengeschwindigkeit. Bereich: 1 Sekunde – 1 Stunde

4.3.1 *Logintervall:* Passendes Logintervall auswählen. In der Tabelle unten erhalten Sie Angaben zur maximalen Protokolldauer. Ist der Logpuffer voll, wird der älteste Datensatz gelöscht, um Platz für den neuesten zu schaffen (Zirkularpuffer).

Inter- vall	1 s	5 s	1 min	5 min	10 min	30 min	1 h	Pro Mess- wert
Zeit	25 min	2 h	25 h	5 d	10 d	31 d	62 d	

4.3.2 *Logger löschen:* Wenn mit **Ja** bestätigt, werden alle Logger-Daten gelöscht. Es wird eine neue Datenserie gestartet.

AMI Silitrace Ultra

Programmliste und Erläuterungen

5 Installation

5.1 Sensoren

- 5.1.1 Meas. Parameter
- 5.1.1.1 Kal./Verif.
- 5.1.1.1.1 Standard: Der Standardwert ist 100 ppb. Zur Kalibrierung oder Verifikation werden etwa 15 ml Standardlösung verbraucht. Daher reicht eine Standardflasche bei den standardmässigen Intervalleinstellungen für 3 Monate. Standardmässige Intervalleinstellungen:

Startzeit: 06:00:00 Montag: Verifikation Alle anderen Aus Tage:

Bereich: 10.0 ppb - 1.0 ppm (1000 ppb)

5.1.1.1.2 Parameter

- 5.1.1.1.2.1 *Startzeit:* Programmieren der täglichen Startzeit einer Verifikation oder Kalibrierung. Die Standardeinstellung ist 06:00:00
- 5.1.1.1.2.2 *Montag:* Programmieren Sie eine Kalibrierung oder Verifikation oder «Aus» für diesen Tag. Eine Verifikation oder Kalibrierung zur programmierten <Startzeit> wird ...gestartet.
- 5.1.1.1.2.3 Dienstag: Wie am Montag.
- 5.1.1.1.2.4 Mittwoch: Wie am Montag.
- 5.1.1.1.2.5 Donnerstag: Wie am Montag.
- 5.1.1.1.2.6 Freitag: Wie am Montag.
- 5.1.1.1.2.7 Samstag: Wie am Montag.
- 5.1.1.1.2.8 Sonntag: Wie am Montag.

Hinweis: Wenn es eine Überschneidung zwischen einer programmierten Hintergrundkalibrierung und einer programmierten Kalibrierung/Verifikation gibt, wird die Hintergrundkalibrierung durchgeführt und die Kalibrierung/ Verifikation übersprungen.

- 5.1.1.2 Autom. Hintergrund
- 5.1.1.3.1 Autom. Nullpunkt: Aktivieren oder Deaktivieren der automatischen täglichen Nullkalibrierung.

Hinweis: Die Hintergrundkalibrierung ist für eine korrekte Messung unabdinglich. Swan empfiehlt daher dringend die Aktivierung der Option «Autom. Hintergrund». Ist die Option deaktiviert, muss die Hintergrundkalibrierung in regelmässigen Abständen manuell oder über den Feldbus gestartet werden.

- 5.1.1.3.2 *Startzeit*: Geben Sie die Startzeit für eine automatische Nullmessung ein.
 - 5.1.1.4 *Küvettenfaktor:* Anzeige des aktuellen Küvettenfaktors.
 - 5.1.2 Probe

5.1.2.1/2 Durchfluss Permeat/Durchfluss Konzentrat

5.1.2.x.1 Offset/Steilheit: Wenn der Durchflussmesser ersetzt wird, die auf dem Etikett aufgedruckten Werte für Offset und Slope eingeben.

5.2 Signalausgänge

Hinweis: Die Navigation für die Menüs <Signalausgang 1> und <Signalausgang 2> ist identisch. Der Einfachheit halber werden im Folgenden nur Menünummern für Signalausgang 1 verwendet.

- **5.2.1 und 5.2.2** Signalausgang 1 und 2: Jedem Signalausgang Prozesswert, Stromschleifenbereich und Funktion zuweisen.
 - 5.2.1.1 *Parameter:* Einen der Messwerte dem Signalausgang zuweisen. Verfügbare Werte:
 - Kieselsäure
 - Probenfluss Permeat
 - Probenfluss Konzentrat
 - 5.2.1.2 *Stromschleife:* Stromschleife des Signalausgangs wählen. Stellen Sie sicher, dass das angeschlossene Gerät mit demselben Strombereich arbeitet. Verfügbare Bereiche: 0–20 mA oder 4–20 mA

5.2.1.3 *Funktion:* Festlegen, ob der Signalausgang zur Übertragung von Prozesswerten oder zur Ansteuerung von Reglereinheiten verwendet wird.

Verfügbare Funktionen sind:

- Linear, bilinear oder logarithmisch für Prozesswerte. Siehe Als Prozesswerte, S. 97.
- Regler auf-/abwärts für die Controller. Siehe Als Steuerausgang, S. 98.

Als Prozesswerte

Der Prozesswert kann auf 3 Arten dargestellt werden: linear, bilinear oder logarithmisch. Siehe nachfolgende Grafiken.

х

X Messwert (logarithmisch)

5.2.1.40 Skalierung: Anfangs- und Endpunkt (hoher/niedriger Bereich) der linearen bzw. logarithmischen Skala und dazu den Mittelpunkt der bilinearen Skala eingeben.

Parameter Kieselsäure:

- 5.2.1.40.10 Bereich tief: 0.000 ppb bis 50.0 ppb
- 5.2.1.40.20 Bereich hoch: 0.000 ppb bis 50.0 ppb

Parameter Probenfluss Permeat:

- 5.2.1.40.11 Bereich tief: 0.0-200.0 l/h
- 5.2.1.40.21 Bereich hoch: 0.0–200.0 l/h

Parameter Probenfluss Konzentrat:

- 5.2.1.40.12 Bereich tief: 0.0-20.0 l/h
- 5.2.1.40.22 Bereich hoch: 0.0–20.0 l/h
- Als Steuerausgang Signalausgänge können zur Ansteuerung von Reglereinheiten verwendet werden. Wir unterscheiden dabei zwischen unterschiedlichen Typen:
 - P-Controller: Die Controller-Aktion ist proportional zur Abweichung vom Sollwert. Der Controller wird durch das P-Band gekennzeichnet. Im Steady-State wird der Sollwert niemals erreicht. Die Abweichung wird als Steady-State-Fehler bezeichnet.

Parameter: Sollwert, P-Band

 PI-Controller: Die Kombination aus einem P-Controller mit einem I-Controller minimiert den Steady-State-Fehler. Wird die Nachstellzeit auf «Null» gesetzt, wird der I-Controller abgeschaltet.

Parameter: Sollwert, P-Band, Nachstellzeit

- PD-Controller: Die Kombination aus einem P-Controller mit einem D-Controller minimiert die Reaktionszeit bei einer schnellen Änderung des Prozesswerts. Wird die Vorhaltezeit auf «Null» gesetzt, wird der D-Controller abgeschaltet.
 Parameter: Sollwert, P-Band, Vorhaltezeit
- PID-Controller: Die Kombination aus einem P-, I- und D-Controller ermöglicht eine angemessene Kontrolle des Prozesses.

Parameter: Sollwert, P-Band, Nachstellzeit, Vorhaltezeit

Ziegler-Nichols-Methode zur Optimierung eines PID-Controllers: **Parameter**: Sollwert, P-Band, Nachstellzeit, Vorhaltezeit

A Antwort auf maximale Steuerausgabe Xp = 1.2/a

В	Tangente am	Wendepunkt	Tn = 2L
---	-------------	------------	----------------

X Zeit Tv = L/2

Der Schnittpunkt der Tangente mit der entsprechenden Achse führt zu den Parametern a und L.

Näheres zum Anschliessen und Programmieren findet sich im Handbuch zur jeweiligen Steuereinheit. Regler auf- oder abwärts wählen.

Falls Regler auf-/abwärts aktiv ist:

5.2.1.43 Regelparameter

- 5.2.1.43.10 *Sollwert:* benutzerdefinierter Prozesswert (gemessener Wert oder Fluss).
- 5.2.1.43.20 *P-Band:* Bereich unterhalb (Aufwärtstaste) oder oberhalb (Abwärtstaste) des Sollwerts, wobei die Dosierungsintensität von 100% bis auf 0% reduziert werden kann, um den Sollwert überschreitungsfrei zu erreichen.
 - 5.2.1.43 Regelparameter: wenn Parameter = Kieselsäure
- 5.2.1.43.12 Sollwert: 0.000 ppb bis 50.0 ppb
- 5.2.1.43.22 P-Band: 0.000 ppb bis 50.0 ppb
 - 5.2.1.43 Regelparameter: wenn Parameter = Permeatfluss
- 5.2.1.43.10 Sollwert: 0.0-200.0 l/h
- 5.2.1.43.20 P-Band: 0.0-200.0 l/h
 - 5.2.1.43 Regelparameter: wenn Parameter = Konzentratfluss
- 5.2.1.43.10 Sollwert: 0.0-20.0 l/h
- 5.2.1.43.20 P-Band: 0.0-20.0 l/h

- 5.2.1.43.3 *Nachstellzeit:* Die Zeit, bis die Schrittreaktion eines einzelnen I-Controllers denselben Wert erreicht, der plötzlich von einem P-Controller erreicht wird. Bereich: 0 – 9000 s
- 5.2.1.43.4 *Vorhaltezeit:* die Zeit, bis die Anstiegsreaktion eines einzelnen P-Controllers denselben Wert erreicht, der plötzlich von einem D-Controller erreicht wird. Bereich: 0 – 9000 s
- 5.2.1.43.5 Überwachungszeit: Läuft eine Controller-Aktion (Dosierintensität) während eines definierten Zeitraums konstant mit mehr als 90 % und erreicht der Prozesswert nicht den Sollwert, wird der Dosierprozess aus Sicherheitsgründen gestoppt. Bereich: 0 – 720 min

5.3 Schaltkontakte

5.3.1 Sammelstörkontakt: Der Sammelstörkontakt wird als kumulativer Fehlerindikator verwendet. Unter normalen Betriebsbedingungen ist der Kontakt offen.

Der Kontakt ist deaktiviert bei:

- Stromausfall
- Feststellung von Systemfehlern wie defekte Sensoren oder elektronische Teile
- Hohe Gehäusetemperatur
- Prozesswerte ausserhalb der programmierten Bereiche.

Alarmschwellenwerte für folgende Parameter programmieren:

- Kieselsäure
- Probenfluss
- Gehäusetemp. hoch
- Gehäusetemp. niedrig

5.3.1.1 Alarm Kieselsäure

- 5.3.1.1.1 *Alarm hoch:* Übersteigt der gemessene Wert den Wert des Parameters «Alarm hoch», werden der Sammelstörkontakt aktiviert und in der Meldungsliste E001/E003 angezeigt. Bereich: 0.000 ppb bis 50.0 ppb
- 5.3.1.1.22 *Alarm tief:* Fällt der gemessene Wert unter den Wert des Parameters «Alarm tief», werden der Sammelstörkontakt aktiviert und in der Meldungsliste E002 angezeigt. Bereich: 0.000 ppb bis 50.0 ppb
- 5.3.1.1.32 *Hysterese:* Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: 0.000 ppb bis 50.0 ppb

- 5.3.1.1.42 *Verzögerung:* Zeit, in der die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0 – 28 800 s
 - **5.3.1.2 Probenfluss:** Probenfluss für die Alarmauslösung programmieren.
 - 5.3.1.2.1 *Probenalarm:* Programmieren Sie, ob der Sammelstörkontakt bei einem Probenalarm aktiviert werden soll. Der Probenalarm wird immer auf dem Display und in der Liste aktueller Fehler angezeigt bzw. in Meldungsliste und Logger gespeichert. Verfügbare Werte: «Ja» oder «Nein»

Hinweis: Ein ausreichender Fluss ist für eine korrekte Messung unabdinglich! Wir empfehlen daher dringend die Option «Ja».

- 5.3.1.2.2 Permeatfluss
- 5.3.1.2.2.1 *Alarm hoch:* Übersteigt der Messwert den programmierten Parameter, wird E003 angezeigt. Bereich: 0 – 200 l/h
- 5.3.1.2.2.22 *Alarm niedrig:* Fällt der Messwert unter den programmierten Parameter, wird E004 angezeigt. Bereich: 0 – 200 l/h
 - 5.3.1.2.3 Konzentratfluss
 - 5.3.1.2.3.1 *Alarm hoch:* Übersteigt der Messwert den programmierten Parameter, wird E005 angezeigt. Bereich: 0 – 20 l/h
- 5.3.1.2.3.22 *Alarm niedrig*: Fällt der Messwert unter den programmierten Parameter, wird E006 angezeigt. Bereich: 0 – 20 l/h
 - 5.3.1.3 Gehäusetemp. hoch: Wert «Alarm hoch» für die Temperatur des Elektronikgehäuses festlegen. Übersteigt der Messwert den programmierten Parameter, wird E013 angezeigt. Bereich: 30 – 75 °C
 - 5.3.1.4 Gehäusetemp. tief: Wert «Alarm tief» für die Temperatur des Elektronikgehäuses festlegen. Fällt die Temperatur unter den programmierten Parameter, wird E014 angezeigt. Bereich: -10 − 20 °C
- 5.3.2 und 5.3.3 Schaltausgang 1 und 2: Die Ausgänge können per Jumper auf normalerweise offen oder normalerweise geschlossen eingestellt werden. Siehe Schaltausgang 1 und 2, S. 32. Die Funktion von Schaltausgang 1 oder 2 wird vom Benutzer definiert:

Hinweis: Die Navigation der Menüs <Schaltausgang 1> und <Schaltausgang 2> ist identisch. Der Einfachheit halber werden im Folgenden nur Menünummern für Schaltausgang 1 verwendet.

101 💻

- 1 Zunächst eine der folgenden Funktionen wählen:
 - Oberer/unterer Grenzwert
 - Regler auf./abw.
 - Zeitschaltuhr
 - Feldbus
 - Messen
- **2** Geben Sie dann die erforderlichen Daten je nach gewählter Funktion ein.
- 5.3.2.1 Funktion = oberer/unterer Grenzwert

Werden die Schaltausgänge als Schalter für obere/untere Grenzwerte verwendet, sind folgende Variablen zu programmieren.

- 5.3.2.20 *Parameter:* Prozesswert wählen
 - Kieselsäure
 - Probenfluss Permeat
 - Probenfluss Konzentrat
- 5.3.2.300 *Sollwert:* Steigt der gemessene Wert über bzw. fällt unter den Sollwert, wird der Schaltausgang aktiviert. Bereich: 0.000 ppb bis 50.0 ppb
- 5.3.2.400 *Hysterese:* Innerhalb des Hysteresebereichs reagiert der Schaltausgang nicht. Dies verhindert eine Beschädigung der Schaltkontakte, wenn der Messwert um den Alarmwert schwankt. Bereich: 0.000 ppb bis 50.0 ppb
 - 5.3.2.50 *Verzögerung:* Zeit, in der die Aktivierung des Alarms verzögert wird, wenn der Messwert über/unter dem programmierten Alarm liegt. Bereich: 0 600 s
 - 5.3.2.1 Funktion = Regler auf-/abwärts

Die Relais können verwendet werden, um Steuereinheiten wie Magnetventile, Membran-Dosierpumpen oder Stellmotoren anzusteuern. Zum Ansteuern eines Stellmotors werden beide Schalt-ausgänge benötigt, einer zum Öffnen und einer zum Schliessen.

- 5.3.2.22 Parameter: Einen der folgenden Prozesswerte wählen:
 - Kieselsäure
 - Probenfluss Permeat
 - Probenfluss Konzentrat
- 5.3.2.32 Einstellungen: das jeweilige Stellglied wählen:
 - Zeitproportional
 - Frequenz
 - Stellmotor

5.3.2.32.1	Stellglied = Zeitproportional
	Beispiele für Messgeräte, die zeitproportional angesteuert werden: Magnetventile, Schlauchpumpen. Die Dosierung wird über die Funktionsdauer geregelt.
5.3.2.32.20	<i>Zyklusdauer:</i> Dauer eines Kontrollzyklus (Wechsel AN/AUS). Bereich: 0 – 600 s
5.3.2.32.30	<i>Reaktionszeit:</i> minimale Dauer, die das Messgerät zur Reaktion benötigt. Bereich: 0 – 240 s
5.3.2.32.4	Regelparameter Bereich für jeden Parameter wie unter 5.2.1.43, S. 99.
5.3.2.32.1	Stellglied = Frequenz
	Beispiele für Messgeräte, die per Impulsfrequenz gesteuert werden, sind die klassischen Membranpumpen mit potenzialfreiem Auslöse- eingang. Die Dosierung wird über die Wiederholungsgeschwindig- keit der Dosierstösse geregelt.
5.3.2.32.21	<i>Impulsfrequenz:</i> max. Anzahl der Impulse pro Minute, auf die das Gerät reagieren kann. Bereich: 20 – 300/min
5.3.2.32.31	Regelparameter Bereich für jeden Parameter wie unter 5.2.1.43, S. 99.
5.3.2.32.1	Stellglied = Stellmotor
	Die Dosierung wird über die Position eines motorbetriebenen Misch- ventils geregelt.
5.3.2.32.22	<i>Laufzeit:</i> Zeit, die zur Öffnung eines vollständig geschlossenen Ventils benötigt wird. Bereich: $5 - 300 \text{ s}$
5.3.2.32.32	<i>Nullzone:</i> Minimale Reaktionszeit in % der Laufzeit. Ist die an- geforderte Dosiermenge kleiner als die Reaktionszeit, erfolgt keine Anderung. Bereich: 1 – 20 %
5.3.2.32.4	Regelparameter Bereich für jeden Parameter wie unter 5.2.1.43, S. 99.
5.3.2.1	Funktion = Zeitschaltuhr
	Der Schaltausgang wird in Abhängigkeit vom programmierten Zeit- schema wiederholt aktiviert.
5.3.2.24	Betriebsart: verfügbar sind Intervall, Täglich und Wöchentlich.
5.3.2.24	Intervall
5.3.2.340	<i>Intervall:</i> Das Intervall kann in einem Bereich von 1 – 1440 min programmiert werden.
5.3.2.44	<i>Laufzeit:</i> Zeit, für die der Schaltausgang aktiviert bleibt. Bereich: 0 – 32400 s

- 5.3.2.54 *Verzögerung:* Laufzeit plus Verzögerungszeit, in der die Signal- und Regelungsausgänge im unten programmierten Betriebsmodus gehalten werden. Bereich: 0 6000 s
 - 5.3.2.6 Signalausgänge: Betriebsmodus der Signalausgänge wählen:
 - Forts.: Die Signalausgänge geben weiterhin den Messwert aus.
 - Hal- Die Signalausgänge halten den letzten gültigen Messwert.
 - *ten:* Die Messung wird unterbrochen. Es werden nur schwerwiegende Fehler angezeigt.
 - Aus: Signalausgänge sind ausgeschaltet (auf 0 oder 4 mA eingestellt). Es werden nur schwerwiegende Fehler angezeigt.
 - 5.3.2.7 *Ausgänge/Regler:* Betriebsmodus der Controller-Ausgabe auswählen:

Forts.: Der Controller arbeitet normal weiter.

Halten: Der Controller arbeitet mit dem letzten gültigen Wert weiter.

Aus: Der Controller ist ausgeschaltet.

5.3.2.24 Täglich

Der Schaltkontakt kann täglich zu jeder Tageszeit geschlossen werden.

- 5.3.2.341 Startzeit: Einstellung wie folgt:
 - 1 [Enter] drücken, um die Stunden einzustellen.
 - 2 Stunden mit den Tasten [] und [] einstellen.
 - 3 [Enter] drücken, um die Minuten einzustellen.
 - 4 Minuten mit den Tasten [] und [] einstellen.
 - 5 [Enter] drücken, um die Sekunden einzustellen.
 - 6 Sekunden mit den Tasten [____] und [____] einstellen.

Bereich: 00:00:00 - 23:59:59

- 5.3.2.44 Laufzeit: siehe Intervall
- 5.3.2.54 Verzögerung: siehe Intervall
- 5.3.2.6 Signalausgänge: siehe Intervall
- 5.3.2.7 Ausgänge/Regler: siehe Intervall

5.3.2.24	Wöchentlich			
	Der Schaltkor aktiviert werde	takt kann an einem oder mehreren Tagen der Woche en. Die tägliche Startzeit gilt für alle Tage.		
5.3.2.342	Kalender:			
5.3.2.342.1	<i>Startzeit:</i> Die programmierte Startzeit gilt für jeden programmierten Tag. Für Infos zum Einstellen der Startzeit siehe 5.3.2.341, S. 104. Bereich: 00:00:00 – 23:59:59			
5.3.2.342.2	<i>Montag:</i> mögliche Einstellungen sind Ein und Aus bis			
5.3.2.342.8	Sonntag: mögliche Einstellungen sind Ein und Aus			
5.3.2.44	Laufzeit: siehe Intervall			
5.3.2.54	Verzögerung: siehe Intervall			
5.3.2.6	Signalausgänge: siehe Intervall			
5.3.2.7	Ausgänge/Regler: siehe Intervall			
5.3.2.1	Funktion = Fe	ldbus		
	Der Schaltausgang wird über den Profibus-Eingang gesteuert. Es sind keine weiteren Parameter notwendig.			
5.3.2.1	Funktion = Messung			
	Das Relais wird verwendet, um anzuzeigen, wenn eine Online-Mes- sung aktiv ist. Wenn sich das Gerät im Messmodus befindet (FIND PEAK, WAIT T1, WAIT T2, WAIT T3), ist das Relais aktiv. In allen anderen Zuständen ist das Relais inaktiv.			
5.3.4	Schalteingang: Die Funktionen der Schalt- und Signalausgänge können je nach Position des Eingangskontakts definiert werden, d. h. «keine Funktion», «geschlossen» oder «offen».			
5.3.4.1	Aktiv: Aktivierungszeit des Schalteingangs festlegen: Die Messung wird während dieser Zeit unterbrochen.			
	Nein:	Der Schalteingang ist nie aktiv.		
	Wenn	Der Schalteingang ist aktiv, wenn der Eingangs-		
	geschlossen:	schaltkontakt geschlossen ist.		
	Wenn offen:	Der Schalteingang ist aktiv, wenn der Eingangs- schaltkontakt offen ist.		

- 5.3.4.2 *Signalausgänge:* Betriebsmodus der Signalausgänge bei aktivem Schaltausgang auswählen:
 - *Forts.:* Die Signalausgänge geben weiterhin den Messwert aus.
 - Halten: Die Signalausgänge halten den letzten gültigen Messwert. Die Messung wird unterbrochen. Es werden nur schwerwiegende Fehler angezeigt.
 - Aus: Auf 0 bzw. 4 mA eingestellt. Es werden nur schwerwiegende Fehler angezeigt.
- 5.3.4.3 Ausgänge/Regler: (Schalt- oder Signalausgang):
 - Forts.: Der Controller arbeitet normal weiter.
 - Halten: Der Controller arbeitet mit dem letzten gültigen Wert weiter.
 - Aus: Der Controller ist ausgeschaltet.
- 5.3.4.4 Fehler:
 - Nein: Es wird keine Meldung in der Liste der aktuellen Fehler angezeigt und der Sammelstörkontakt wird bei aktivem Schalteingang nicht geschlossen. Meldung E024 ist auf der Meldungsliste gespeichert.
 - Ja: Es wird die Meldung E024 ausgegeben und der Sammelstörkontakt wird bei aktivem Schalteingang geschlossen.
- 5.3.4.5 *Verzögerung:* Wartezeit für das Instrument ab Deaktivierung des Schalteingangs bis zur Wiederaufnahme des Normalbetriebs. Bereich: 0 6000 s

5.4 Verschiedenes

- 5.4.1 Sprache: die gewünschte Sprache festlegen.
 - Sprache Deutsch Englisch Französisch Spanisch

5.4.2 *Werkseinstellung:* Für das Zurückstellen des Instruments auf die Werkseinstellungen gibt es drei Möglichkeiten:

Werkseinstellung
nein
Kalibrierung
Teilweise
Vollständig

- Kalibrierung: Setzt die Kalibrierungswerte auf die Werkseinstellung zurück. Alle anderen Werte bleiben gespeichert.
- **Teilweise:** Die Kommunikationsparameter bleiben gespeichert. Alle anderen Werte werden auf die Werkseinstellung zurückgesetzt.
- Vollständig: Setzt alle Werte einschliesslich der Kommunikationsparameter zurück.
- 5.4.3 *Firmware laden:* Die Aktualisierung der Firmware sollte nur von geschulten Servicemitarbeitern durchgeführt werden.

Firmware laden
nein
ja

- **5.4.4 Passwort:** Festlegung eines Passworts, das nicht «0000» ist, um den unberechtigten Zugriff auf die folgenden Menüs zu verhindern:
- 5.4.4.1 Meldungen
- 5.4.4.2 Wartung
- 5.4.4.3 Aufgabe
- 5.4.4.4 Installation.

Jedes Menü kann durch ein eigenes Passwort geschützt werden. Wenn Sie die Passwörter vergessen haben, wenden Sie sich an den nächsten SWAN-Vertreter.

- 5.4.5 *ID Probe:* Identifizieren Sie den Prozesswert mit einem sinnvollen Text, z. B. der KKS-Nummer.
- 5.4.6 *Überw. Signalausgang:* Definieren, ob Meldung E028 bei einer Leitungsunterbrechung an Signalausgang 1 oder 2 angezeigt werden soll.

<Ja> oder <Nein> wählen.

5.5 Schnittstelle

	Auswahl eines der f nach Auswahl müss	olgenden Kommunikationsprotokolle. Je en verschiedene Parameter definiert werden.	
5.5.1	Protokoll: Profibus		
5.5.20	Geräteadresse:	Bereich: 0 – 126	
5.5.30	ID-Nr.:	Bereich: Analysegeräte; Hersteller; Multivariabel	
5.5.40	Lokale Bedienung:	Bereich: Aktiviert/Deaktiviert	
5.5.1	Protokoll: Modbus RTU		
5.5.21	Geräteadresse:	Bereich: 0 – 126	
5.5.31	Baudrate:	Bereich: 1200–115200 Baud	
5.5.41	Parität:	Bereich: keine, gerade, ungerade	
5.5.1	Protokoll: USB-Stick		
	Wird nur angezeigt, andere Auswahl mö	wenn eine USB-Schnittstelle installiert ist. Keine öglich	
5.5.1	Protokoll: HART		
-			

5.5.24 Geräteadresse: Bereich: 0–63

10. Sicherheitsdatenblätter

Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 1a
nung:	Ammoniummolybdat Tetrahydrat.
Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 1b
nung:	Natriumhydroxid
Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 2
nung:	Schwefelsäure
Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 3
nung:	Oxalsäure-Dihydrat
Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 4a
nung:	Eisen (II)-ammoniumsulfat Hexahydrat
Artikelnummer:	A-85.420.860
Artikelbezeich-	AMI Silitrace Reagenz 4b
nung:	Schwefelsäure
Artikelnummer:	A-85.142.500
Artikelbezeich-	Kieselsäure-Standard, 100 ppb
nung:	Kalibrierlösung

Download der Sicherheitsdatenblätter

Die aktuellen Sicherheitsdatenblätter zu den oben aufgeführten Reagenzien sind zum Download unter **www.swan.ch** verfügbar.

11. Werkeinstellungen

Betrieb:

Sensoren Filterzeitkonst.: Haltezeit nach Kal.:	10 s 720 s
Schaltkontakte Sammelstörkontakwie u	Inter Installation
Schaltausgang 1 und 2wie u	Inter Installation
Schalteingangwie u	Inter Installation
Logger: Loggerinterval: Logger löschen:	. Pro Messwert
Installation:	
Sensoren Messparameter; Kal/Verif:	100 ppb
Messparameter; Parameter; Startzeit:	06:00:00
Messparameter; Parameter; Montag:	Verifikation
Messparameter; Parameter; Dienstag:	aus
Messparameter; Parameter; Mittwoch:	aus
Messparameter; Parameter; Donnerstag:	aus
Messparameter; Parameter; Freitag:	aus
Messparameter; Parameter; Samstag:	aus
Messparameter; Parameter; Sonntag:	aus
Messparameter; Autom. Hintergrund; Autom. Hinterg	rund:aktiv
Messparameter; Autom. Hintergrund; Startzeit:	00:30:00
Signalausgang Parameter:	Kieselsäure
1 Stromschleife:	4–20 mA
Funktion:	linear
Skalierung: Skalenanfang:	0.000 ppb
Skalierung: Skalenende:	50.0 ppb
Signalausgang Parameter: Probe	enfluss Permeat
2 Stromschleife:	
- Funktion:	linear
Skalierung: Skalenanfang:	50.0 l/h
Skalierung: Skalenende:	200.0 l/h

AMI Silitrace Ultra

Werkeinstellungen

Sammelstör-	Alarm Kieselsäure:	
kontakt:	Alarm hoch:	50.0 ppb
	Alarm tief:	0.000 ppb
	Hysterese:	0.500 ppb
	Verzögerung:	30 s
	Probenfluss:	
	Probenalarm:	ja
	Probenfluss Permeat; Alarm hoch	200 ľ/h
	Probenfluss Permeat; Alarm tief	50.0 l/h
	Probenfluss Konzentrat; Alarm hoch	20 l/h
	Probenfluss Konzentrat; Alarm tief	2.5 l/h
	Gehäusetemp. hoch:	
	Genausetemp. tiet:	
Schaltausgang	Funktion:	Ob. GW
1 und 2	Parameter:	Kieselsaure
	Sollwert:	50.0 ppb
	Hysterese:	
	Verzogerung	30 S
	wenn Funktion = Autw.Regier oder Abw.Regier:	
	Parameter:	Kieseisaure
	Einstellungen: Pulsfrequenz:	120/min
	Einstellungen: Regelparameter: Sollwert:	50.0 ppb
	Einstellungen: Regelparameter: P-band:	
	Parameter: Prob	enfluss Permeat
	Settings: Actuator:	Frequenz
	Einstellungen: Pulstrequenz:	
	Einstellungen: Regelparameter: Sollwert:	
	Einstellungen: Regelparameter: P-band:	
	Parameter: Proben	Frequenz
	Einstellungen: Dulofrequenz:	120/min
	Einstellungen: Pagelparameter: Sellwort:	120/11/11 20.01/h
	Einstellungen: Regelparameter: P-hand:	20.01/11 1 01/h
	Gemeinsame Finstellungen	
	Einstellungen: Regelnarameter: Nachstellzeit:	0 s
	Einstellungen: Regelparameter: Vorhaltezeit:	03 0s
	Einstellungen: Regelparameter: Überwachungsz	eit: 0 min
	Einstellungen: Stellglied:	Zeitproportional
	Zvkluszeit:	
	Ansprechzeit:	10 s
	-	

	Einstellungen: Stellglied	Stellmotor
	Laufzeit:	
	Neutrale Zone:	
	Wenn Funktion = Zeitschaltuhr:	
	Betriebsart:	Intervall
	Intervall:	1 min
	Betriebsart:	täglich
	Startzeit:	
	Betriebsart:	wöchentlich
	Kalender; Startzeit:	
	Kalender; Montag bis Sonntag:	aus
	Aktivzeit:	10 s
	Verzögerung:	5 s
	Signalausgänge:	fortfahren
	Ausgänge/Regler:	fortfahren
Schalteingang:	Aktiv	wenn zu
00	Signalausgänge	halten
	Ausgänge/Regler	aus
	Störung	aus
	Verzögerung	10 s
Diverses	Sprache:	Englisch
	Werkseinstellung:	nein
	Firmware laden:	nein
	Passwort:	für alle Betriebsarten 0000
	ID Probe:	
	Uberwachung Signalausgang	nein

12. Index

Α

Aktuatoren	33 10
E Einrichten	37

Н

••											
HART						•	•	•			36

Κ

Kabelstärke	27
Kal. History Verlauf	90
Kalender	105
Kieselsäuremessung	15
Klemmen 29, 31	, 35
Küvettenfaktor 73	, 93

L

Längere Betriebsunterbrechungen. 6	32
------------------------------------	----

Μ

Magnetventil ausbauen	77
Messprinzip	10
Modbus	35
Montageanforderungen	22
Montieren	22

Ρ

P2P								
Diagramm								91
Periode								91
Zähler								91
Probenfluss								42
Profibus			•	•		•	35-	-36

R

Reagenzverbrauch .											52
--------------------	--	--	--	--	--	--	--	--	--	--	----

S

Sammelstörkontakt 14, 3	1
Schaltausgänge 1	4
Schalteingang 14, 3	1
Schlauchnummerierung 7	4
Schnittstelle	
HART 3	6
Modbus 3	5
Profibus 3	5
USB 3	6
Sicherheitsfunktionen 1	4
Signalausgänge 12, 3	4
Software 4	9
Standardverbrauch 4	1
Standortanforderungen 1	5
Stromausgänge 3	4
Stromversorgung 3	0
System füllen 9	3
System, Beschreibung des 1	0

т

Technische Daten.											17
-------------------	--	--	--	--	--	--	--	--	--	--	----

U

Übersicht über das Instrument 17

V

Ver. History	/er	laι	lf						90
Verdrahtung									27

W

Wartung vorbereiten						93
Werkeinstellungen			•			110

Z		Zustand	88
Zielgruppe	6		

13. Notizen

-	

A-96.250.830 / 030122

Swan-Produkte - Analytische Instrumente für:

Swan ist weltweit durch Tochtergesellschaften und Distributoren vertreten und kooperiert mit unabhängigen Vertriebspartnern auf der ganzen Welt. Für Kontaktangaben den QR-Code scannen.

Swan Analytical Instruments · CH-8340 Hinwil www.swan.ch · swan@swan.ch

AMI Silitrace Ultra