

A-96.210.711 / 031025

AMI-II Pool

Operator's Manual

Customer Support

Swan and its representatives maintain a fully trained staff of technical specialists around the world. For any technical question, contact your nearest Swan representative, or the manufacturer:

Swan Analytische Instrumente AG Studbachstrasse 13 8340 Hinwil Switzerland

Internet: www.swan.ch E-mail: support@swan.ch

Document Status

Title:	AMI-II Pool Operator's Manual	
ID:	A-96.210.711	
Revision	Issue	
00	October 2025	First edition

© 2025, Swan Analytische Instrumente AG, Switzerland, all rights reserved.

This manual applies to firmware V1.01 and higher. The information contained in this document is subject to change without notice.

AMI-II Pool

Table of Contents

1. 1.1. 1.2.	Warning Notices General Safety Regulations	5 6 8
2. 2.1. 2.2. 2.3. 2.4.	Product Description Description of the System Instrument Specification Instrument Overview Swansensor pH and Redox Standard	9 14 16 17
33. 33.1. 33.2. 33.3. 33.5. 33.5. 33.5. 33.6. 33.6. 33.6. 33.7. 33.8. 33.8. 33.8. 33.8.	Power Supply Relay Contacts Input. Alarm Relay Relay 1 and 2. Signal Outputs. Signal Output 1 and 2 (Current Outputs) Interface Options. Signal Outputs 3 and 4 RS485 (Profibus or Modbus Protocol)	18 18 19 19 21 24 25 26 27 27 27 27 27 27 27 29 29 30
4. 4.1. 4.2. 4.3.	Instrument Setup. Establish Sample Flow	31 31 31 32
5. 5.1. 5.2. 5.3. 5.4.	Operation Keys Display Software Structure Changing Parameters and Values	33 34 35 36

AMI-II Pool

6.	Maintenance	37
6.1.	Maintenance Schedule	37
6.2.	Cleaning Electrodes	38
6.3.	Process Calibration	40
6.4.	Standard Calibration	41
6.5.	Longer Stop of Operation	42
7.	Troubleshooting	43
	Error List.	
	Replacing Fuses	
8.	Program Overview	48
8. 8.1.	Program Overview	
		48
8.1.	Messages (Main Menu 1)	48 49
8.1. 8.2.	Messages (Main Menu 1) Diagnostics (Main Menu 2)	48 49 51
8.1. 8.2. 8.3.	Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3)	48 49 51 52
8.1. 8.2. 8.3. 8.4.	Messages (Main Menu 1) Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4)	48 49 51 52 53
8.1. 8.2. 8.3. 8.4. 8.5.	Messages (Main Menu 1). Diagnostics (Main Menu 2) Maintenance (Main Menu 3) Operation (Main Menu 4). Installation (Main Menu 5)	48 49 51 52 53 55

Operator's Manual

This document describes the main steps for instrument setup, operation and maintenance.

1. Safety Instructions

General

The instructions included in this section explain the potential risks associated with instrument operation and provide important safety practices designed to minimize these risks.

If you carefully follow the information contained in this section, you can protect yourself from hazards and create a safer work environment.

More safety instructions are given throughout this manual, at the respective locations where observation is most important. Strictly follow all safety instructions in this publication.

Target audience

Operator: Qualified person who uses the equipment for its intended purpose.

Instrument operation requires thorough knowledge of applications, instrument functions and software program as well as all applicable safety rules and regulations.

OM location

Keep the Operator's Manual in proximity of the instrument.

Qualification, training

To be qualified for instrument installation and operation, you must

- read and understand the instructions in this manual as well as the Material Safety Data Sheets,
- know the relevant safety rules and regulations.

1.1. Warning Notices

The symbols used for safety-related notices have the following meaning:

DANGER

Your life or physical wellbeing are in serious danger if such warnings are ignored.

• Follow the prevention instructions carefully.

WARNING

Severe injuries or damage to the equipment can occur if such warnings are ignored.

• Follow the prevention instructions carefully.

CAUTION

Damage to the equipment, minor injury, malfunctions or incorrect process values can be the consequence if such warnings are ignored.

• Follow the prevention instructions carefully.

Mandatory signs

The mandatory signs in this manual have the following meaning:

Safety goggles

Safety gloves

Warning signs The warning signs in this manual have the following meaning:

Electrical shock hazard

Corrosive

Harmful to health

Flammable

General warning

Attention

1.2. General Safety Regulations

Legal requirements

The user is responsible for proper system operation. All precautions must be followed to ensure safe operation of the instrument.

Spare parts and disposables Use only official Swan spare parts and disposables. If other parts are used during the normal warranty period, the manufacturer's warranty is voided.

Modifications

Modifications and instrument upgrades shall only be carried out by an authorized service technician. Swan will not accept responsibility for any claim resulting from unauthorized modification or alteration.

WARNING

Electrical shock hazard

If proper operation is no longer possible, the instrument must be disconnected from all power lines, and measures must be taken to prevent inadvertent operation.

- To prevent from electrical shock, always make sure that the ground wire is connected.
- Service shall be performed by authorized personnel only.
- Whenever electronic service is required, disconnect instrument power and power of devices connected to
 - relay 1,
 - relay 2,
 - alarm relay.

WARNING

For safe instrument installation and operation you must read and understand the instructions in this manual.

2. Product Description

2.1. Description of the System

Application range

The AMI-II Pool is applicable for the measurement of pH and redox (ORP) in pool water.

Signal outputs

Two signal outputs programmable for measured values (freely scalable, linear, bilinear, log) or as continuous control output (control parameters programmable).

Current loop: 0/4-20 mA

Maximal burden: 510Ω

Two additional signal outputs with the same specifications available as an option.

Relays

Two potential-free contacts programmable as limit switches for measured values, controllers or timers with automatic hold function.

Maximum load: 100 mA/50 V resistive

AMI-II Relay Box (option) The AMI-II Relay Box adds two additional relays to the AMI-II transmitter (displayed as relays 3 and 4 in the menu).

It is intended for the direct power supply (AC) and control of dosing devices, e.g. two solenoid valves, two dosing pumps or one motor valve.

Maximum load: 1.5 A/230 VAC

Alarm relay

Two potential-free contacts (one normally open and one normally closed contact). Summary alarm indication for programmable alarm values and instrument faults.

Normally open contact:

Closed during normal operation, open on error and loss of power.

Normally closed contact:

Open during normal operation, closed on error and loss of power.

Maximum load: 100 mA/50 V resistive

Input

One input for potential-free contact to freeze the measured value or to interrupt control in automated installations. Programmable as HOLD or OFF function.

Communication interface (optional) Two additional signal outputs

RS485 with fieldbus protocol Modbus RTU or Profibus DP

HART

Safety features

No data loss after power failure. All data is saved in non-volatile memory. Overvoltage protection of inputs and outputs. Galvanic separation of measuring inputs from signal outputs.

AMI-II Pool

Product Description

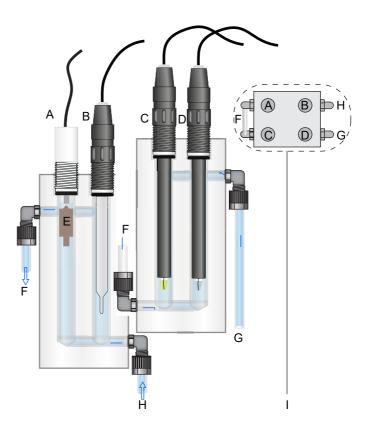
pH measuring principle (simplified)

The pH measurement is based on a voltage measurement. A voltage can only be measured between two different potentials, therefore, the pH measuring chain contains a measuring electrode and a reference electrode. The reference electrode maintains a constant potential whereas the potential of the measuring electrode changes with the pH value. The voltage which results from this potential difference is measured and displayed on the transmitter as pH value. The measuring chain is designed so that the voltage is zero at pH 7.

ORP measuring principle (simplified)

The ORP (redox) measurement is based on a voltage measurement. A voltage can only be measured between two different potentials, therefore, the ORP (redox) measuring chain contains a measuring electrode and a reference electrode. The reference electrode maintains a constant potential whereas the potential of the measuring electrode changes with the ORP value. The voltage which results from this potential difference is measured and displayed on the transmitter as ORP value in millivolt (mV).

Fluidics

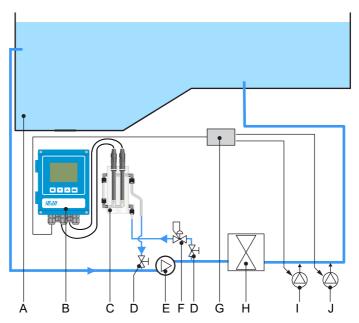

The flow cell is divided into a rear and a front flow cell, which are connected to each other via a pipe [F].

The sample enters the flow cell via the sample inlet [H] and first flows through the rear part of the flow cell, where the sample flow is monitored and the temperature is measured. From there, the sample flows through the connection pipe [F] into the front flow cell, where the pH value and redox potential are measured.

Depending on the application, the flow cell is connected parallel to the circulation pump or directly to the pool.

Flow cell

- A Hall effect flow detector
- **B** Temperature sensor
- **C** pH sensor
- **D** ORP (redox) sensor
- E Float


- F Connection pipe
- G Sample outlet
- **H** Sample inlet
- I Flow cell top view

AMI-II Pool

Product Description

Application 1: private pool water treatment

A Pool

B Transmitter

C Flow cell with sensors

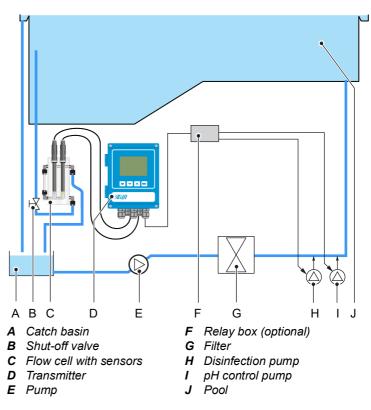
D Shut-off valves

E Pump

F Pressure regulator

G AMI-II Relay Box (optional)

H Filter


I Disinfection pump

J pH control pump

The flow cell is connected in parallel to the circulation pump. The sample inlet of the flow cell is connected to the pipe on the outlet side of the circulation pump, and the sample outlet is connected to the pipe on the inlet side of the circulation pump.

Application 2: public pool water treatment

The sample inlet of the flow cell is directly connected to the pool and the sample outlet leads to the catch basin.

2.2. Instrument Specification

Power supply AC variant: 100–240 VAC (±10%)

50/60 Hz (±5%)
DC variant: 10–36 VDC
Power consumption max. 35 VA

Transmitter Housing: aluminum, with a protection degree of

specifications IP 66 / NEMA 4X Ambient temperature: IP 66 / NEMA 4X -10 to +50 °C

Humidity: 10–90% rel., non condensing

Display: backlit LCD, 74 x 53 mm

Sample requirementsFlow rate:min. 30 l/hTemperature:max. 50 °C

Operating pressure: max. 2 bar

On-siteSample inlet:8 mm Serto tube adapter (PA)requirementsSample outlet:8 mm Serto tube adapter (PA)

Measuring
rangeParameterRangeResolutionrangepH:1.00-13.00 pH0.01 pH

Redox (ORP) -1500-1500 mV 1 mV

Temperature sensor: Pt1000 (DIN class A)

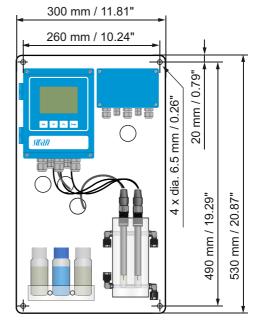
Range: -30-250 °C Accuracy (0-50 °C) ±0.25 °C

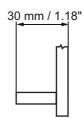
Resolution 0.1 °C

The operating temperature is limited by the flow cell and the sensor.

Dimensions

Panel:


Dimensions:


Screws: Weight: **PVC**

300×530×150 mm

8 mm

2.3. Instrument Overview

- A Transmitter
- **B** AMI-II Relay Box (option)
- C Hall effect flow detector (not visible)
- **D** Temperature sensor (not visible)
- **E** pH sensor

- F Redox sensor
- G Flow cell
- **H** Sample outlet
- I Sample inlet
- J Calibration solution pH 7
- K Calibration solution pH 9
- L Calibration solution Redox

2.4. Swansensor pH and Redox Standard

General properties

Type: Combined electrodes with gel

electrolyte

Pressure: < 2 barConductivity: > 150 µS/cmConnection: plug PG 13.5

Operating temperature: 0–50 °C

pH sensor Measuring range: 1 to 13 pH

ORP sensor Measuring range: -1500 to 1500 mV

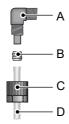
3. Installation

3.1. Installation Checklist

On-site requirements	AC variant: 100–240 VAC (±10%), 50/60 Hz (±5%). DC variant: 10–36 VDC. Power consumption: 35 VA maximum. Protective earth connection required. Sample line with sufficient sample flow and pressure (see Instrument Specification, p. 14).
Installation	Mount the instrument in vertical position. Display should be at eye level.
Electrodes	Install the sensors and connect the sensor cables. Store the protective caps for later use.
Electrical wiring	Connect all external devices like limit switches and current loops according to the connection diagram. Connect power cord.
Power-up	Start sample flow and wait until the flow cell is completely filled. Switch on power.
Instrument setup	Adjust sample flow. Program all sensor parameters. Program all parameters for external devices (interface, recorders, etc.). Program all parameters for instrument operation (limits, alarms).
Run-in period	Let the instrument run continuously for 1 h.
Calibration	Calibrate the pH and redox electrodes.

3.2. Mounting the Instrument

Mounting requirements


Mount the instrument in vertical position. The display should be at eye level to simplify operation and maintenance.

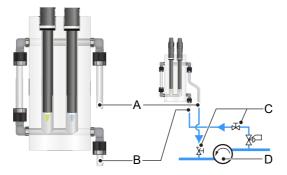
The instrument is intended for indoor installation or weather-protected installation in cabinets.

Dimensions For dimensions, see p. 15.

3.3. Connecting Sample Inlet and Outlet

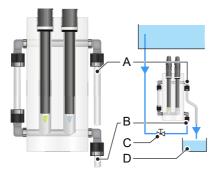
Use plastic tube (FEP, PA, or PE 6 x 8 mm) to connect the sample line.

- A Elbow union
- **B** Compression ferrule
- C Knurled nut
- **D** Flexible tube


Installation

Application 1, private pool

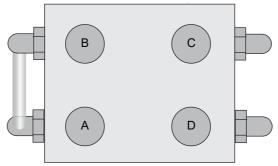
The flow cell of the AMI-II Pool is connected in parallel to the pump [D].


- 1 Connect the sample inlet [B] to the sample line at the pump outlet.
- 2 Connect the sample outlet [A] to the sample line at the pump inlet.

Application 2, public pool

The flow cell of the AMI-II Pool is connected directly to the pool and the outlet is connected to the catch basin [D].

- 1 Connect the sample inlet [B] to the sample line of the pool.
- 2 Connect the sample outlet [A] to the catch basin.



3.4. Installing Electrodes

Overview

The sensors and electrodes are installed as shown in the figure shown below.

A pH sensor

B Hall effect flow detector

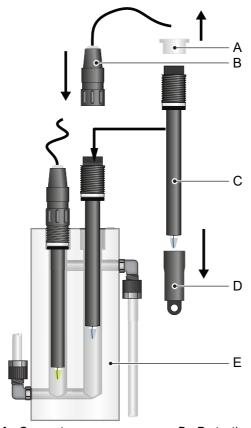
C Temperature sensor

D Redox sensor

Temperature sensor

The temperature sensor is already installed and connected to the transmitter.

Hall effect sensor


The hall effect flow detector is already installed and connected to the transmitter.

Installation

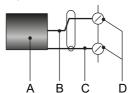
Electrodes

This instruction applies for both the pH and the ORP electrode. The sensor cables are marked with "pH" for the pH sensor and with "R" for the redox sensor. Do not interchange them.

- A Connector cap
- **B** Connector
- C Electrode

- **D** Protection cap
- E Flow cell

Recommended personal protective equipment:



- 1 Carefully remove the protection cap [D] from the sensor tip. Turn it clockwise only.
- Be careful not to spill KCl when removing the protection cap.
- 2 Rinse the sensor tip with clean water.
- 3 Insert the electrode into the corresponding hole of the flow cell block [E].
- 4 Tighten it hand-tight.
- **5** Remove the connector cap [A].
- 6 Screw the connector [B] onto the sensor.
- 7 Keep the protection caps in a safe place for later use.

Connection to transmitter

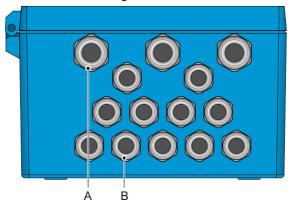
Connect the sensor cable to the transmitter according to the electrical connection scheme.

The coaxial cable of the sensor consists of an inner conductor [B] and a shield [C]. Do not interchange the conductors when connecting the cable to the terminals.

- A Coaxial cable
- **B** Inner conductor (blue)
- C Shield (white)
- **D** Terminals

3.5. Electrical Connections

WARNING


Risk of electrical shock

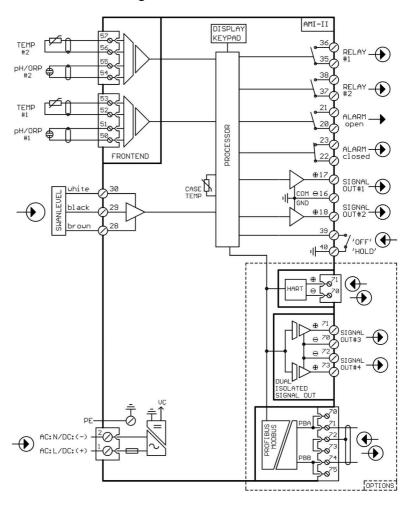
Failure to follow safety instructions can result in serious injury or death.

- Always turn off power before manipulating electric parts.
- Do not connect the instrument to power unless the ground wire (PE) is connected.
- Make sure the power specification of the instrument corresponds to the power on site.

Cable thicknesses

In order to comply with IP66, use the following cable thicknesses. Protect unused cable glands.

A M16 cable glands (3x): cable \varnothing_{outer} 5–10 mm **B** M12 cable glands (11x): cable \varnothing_{outer} 3–6 mm


Wires

For power and relays: Use max. 1.5 mm² / AWG 14 stranded wire with end sleeves.

For signal outputs and input: Use 0.25 mm² / AWG 23 stranded wire with end sleeves.

3.5.1 Connection Diagram

CAUTION

Use only the terminals shown in this diagram, and only for the mentioned purpose. Use of any other terminals will cause short circuits with possible corresponding consequences to material and personnel.

3.5.2 Power Supply

- A Neutral conductor, terminal 2
- B Phase conductor, terminal 1
- C Power supply connector
- D Protective earth PE

Installation requirements

The installation must meet the following requirements.

- Mains cable to comply with standards IEC 60227 or IEC 60245; flammable rating FV1
- Mains equipped with an external switch or circuit-breaker
 - near the instrument
 - easily accessible to the operator
 - marked as interrupter for AMI-II Pool

3.6. Relay Contacts

3.6.1 Input

Use only potential-free (dry) contacts.

Terminals: 39/40

3.6.2 Alarm Relay

Two alarm outputs for system errors.

- Normally closed contact (terminals: 22/23):
 Active (opened) when no error is present. Inactive (closed) on error and loss of power.
- Normally open contact (terminals: 20/21):
 Active (closed) when no error is present. Inactive (opened) on error and loss of power.

Max. load 100 mA/50 V resistive

3.6.3 Relay 1 and 2

Max. load 100 mA/50 V resistive

Relay 1: terminals 35/36. Relay 2: terminals 37/38.

3.7. Signal Outputs

3.7.1 Signal Output 1 and 2 (Current Outputs)

Max. burden 510 Ω .

If signals are sent to two different receivers, use signal isolator (loop isolator).

Signal output 1: Terminals 17 (+) and 16 (-) Signal output 2: Terminals 18 (+) and 16 (-)

3.8. Interface Options

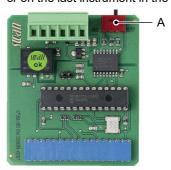
- A AMI-II transmitter
- **B** SD card slot
- C Cable grommet
- **D** Screw terminals
- **E** Frontend
- F Communication option

The slot for interfaces can be used to expand the functionality of the AMI-II transmitter with either:

- Two additional signal outputs
- Profibus or Modbus
- HART

3.8.1 Signal Outputs 3 and 4

Max. burden 510 Ω .


If signals are sent to two different receivers, use signal isolator (loop isolator).

Signal output 3: terminals 71 (+) and 70 (-). Signal output 4: terminals 73 (+) and 72 (-).

3.8.2 RS485 (Profibus or Modbus Protocol)

Terminal 74/75 PB, terminal 70/71 PA, terminal 72/73 shield The switch [A] must be set to "ON" if only one instrument is installed or on the last instrument in the bus.

A On/off switch

3.8.3 HART

Terminals 71 (+) and 70 (-).

4. **Instrument Setup**

4.1. **Establish Sample Flow**

- 1 Open the sample tap.
- 2 Wait until the flow cell is completely filled.
- 3 Switch on power.

4.2 **Programming**

Sensors Menu 5.1.1

The parameters must be set as follows:

Electrodes: pH - mV

Flow measurement: Level switch

• Temperature: 1 sensor

External

Menu 5.2 Signal Outputs

devices

Menu 5.4 Interface

Limits and

Menu 5.3 Relay Contacts

alarms

Program all parameters for instrument operation (limits, alarms).

Calibration

Menu 5.1.4 Standards

solutions

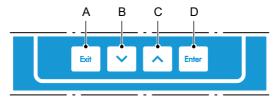
If necessary, enter the values of the calibration solutions used. The temperature curves for the buffer solutions Standard 1 (pH7) and Standard 2 (pH9) available from Swan are preset in the transmitter firmware. To program the temperature curve for the buffer solution

pH4 overwrite standard 2.

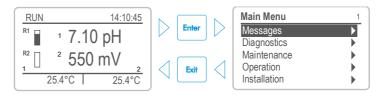
Please note that this table is only valid for Swan buffers. If you use different buffers, refer to the manufacturer's documentation.

Temperature	Value pH7	Value pH9	Value pH4
Buffer value at 0 °C	7.13	9.24	3.99
Buffer value at 5 °C	7.07	9.19	3.99
Buffer value at 10 °C	7.05	9.14	3.99
Buffer value at 15 °C	7.03	9.08	3.99
Buffer value at 20 °C	7.01	9.05	3.99
Buffer value at 25 °C	7.00	9.00	4.00
Buffer value at 30 °C	6.99	8.96	4.01
Buffer value at 35 °C	6.98	8.93	4.01
Buffer value at 40 °C	6.98	8.90	4.03
Buffer value at 50 °C	6.98	8.84	4.05

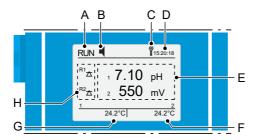
4.3. Calibration of pH and Redox Electrodes


Let the instrument run for at least one hour before calibrating the electrodes.

See Process Calibration, p. 40 and Standard Calibration, p. 41.


5. Operation

5.1. Keys


- A to exit a menu or command (rejecting any changes) to move back to the previous menu level
- B to move down in a menu list and to decrease digits
- C to move up in a menu list and to increase digits
- **D** to open a selected menu item to accept an entry

Program access, exit

5.2. Display

A RUN Normal operation

HOLD Input active or cal delay: Instrument on hold (shows status of

signal outputs)

OFF Input active: Signal outputs go to 4 mA.

B Error

Non-fatal error

→ Fatal error

C Keys locked, transmitter control via Profibus

D Time

E Process values

F Sample temperature

G Sample temperature

H Relay status

If the optional AMI-II Relay Box is installed, press the

✓ key to display the status of relays 3 and 4.

Press the \(\structure \) key again to return to the status of relays 1 and 2.

Symbols used for relay status:

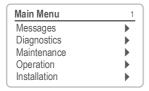
Lipper/lower limit reached

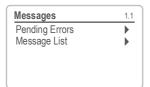
Control upw./downw. no action

Control upw./downw. active, dark bar indicates control intensity

Motor valve closed

Motor valve open, dark bar indicates approximate position


① Time


Timer: timing active (hand rotating)

Relay controlled via fieldbus

5.3. Software Structure

Diagnostics	2.1
Identification	
Sensors	•
Sample	>
I/O State	>
SD Card	•

Maintenan	ce	3.1
Electrode '	1	•
Electrode 2	2	•
Simulation		•
Set Time	23.09.06 16:30	:00

Installation	5.1
Sensors	•
Signal Outputs	•
Relay Contacts	•
Miscellaneous	•
Interface	•

Menu Messages 1

Shows pending errors as well as the event history (time and state of events that have occurred at an earlier point of time).

Contains user-relevant data.

Menu Diagnostics 2

Provides user-relevant instrument and sample data.

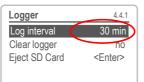
Menu Maintenance 3

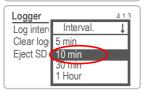
For instrument calibration, relay and signal output simulation, and to set the instrument time. Used by service personnel.

Menu Operation 4

User-relevant parameters that might need to be modified during daily routine. Normally password protected and used by the process operator. Subset of menu 5 - Installation, but process related.

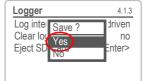
Menu Installation 5


For initial instrument set up by Swan authorized person. Can be protected by means of a password.


5.4. Changing Parameters and Values

Changing parameters

The following example shows how to change the logger interval:


- 1 Select the parameter you want to change.
- 2 Press [Enter].

- 3 Press ∧ or ∨ to highlight the required parameter.
- 4 Press [Enter] to confirm the selection or [Exit] to keep the previous parameter).

- ⇒ The selected parameter is highlighted (but not saved yet).
- 5 Press [Exit].

- ⇒ Yes is highlighted.
- 6 Press [Enter] to save the new parameter.

Changing values

Alarm	5,3.1.1.1
Alarm High	9.0 pH
Alarm Low	-3.0 pH
Hysteresis	0.1 pH
Delay	5 Sec
,	

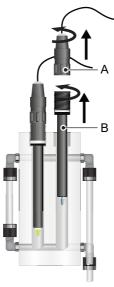
- 1 Select the value you want to change.
- 2 Press [Enter].
- 3 Set required value with ∧ or ∨.
- 4 Press [Enter] to confirm the new value.
- Fress [Exit].⇒ Yes is highlighted.
- 6 Press [Enter] to save the new value.

6. Maintenance

6.1. Maintenance Schedule

Swansensor pH or Redox Standard:

Every three months	 If necessary, clean electrode. Check expiration date of calibration solution(s). Calibrate electrode.
Yearly	Replace electrode.



6.2. Cleaning Electrodes

To remove the electrodes from the flow cell, proceed as follows:

pH electrode

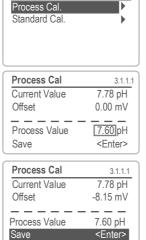
- 1 Stop sample flow.
- 2 Switch off power to the instrument.
- 3 Unscrew and remove the connector [A] from the electrode [B].
- 4 Unscrew and remove the electrode [B] from the flow cell block.

- 5 If necessary wipe the electrode shaft and the tip cautiously with a soft, clean, and damp paper tissue.
- **6** Remove grease with a tissue moistened with alcohol.
- 7 If the electrode is very dirty, put its tip into 1% diluted hydrochloric acid for roughly 1 min.
- 8 Afterwards rinse the electrode tip thoroughly with clean water.
- 9 Install the electrode in the flow cell again.
- **10** Let the electrode run-in for 1 h before the first calibration.

ORP electrode

- 1 Stop sample flow.
- 2 Switch off power to the instrument.
- 3 Take the electrode out of the flow cell.

- **4** If necessary, wipe off dirt cautiously with a soft, clean, and damp paper tissue.
 - ⇒Dull platinum surfaces indicate a contamination.
- 5 If the electrode is very dirty, put its tip into 1% diluted hydrochloric acid for roughly 1 min.
- **6** Afterwards rinse the electrode tip thoroughly with clean water.
- 7 Install the electrode in the flow cell again.
- 8 Let the electrode run-in for 1 h before the first calibration.


6.3. Process Calibration

Electrode 1

The process calibration is based on a comparative measurement of the on-line instrument with a reference instrument.

3.1.1

Process pH or redox calibration

1 Navigate to Maintenance > Electrode 1/2 > Process Cal.

- 2 Press [Enter].
- 3 Enter the value of the comparative measurement using the arrow keys.
- 4 Press [Enter] to save.
 - ⇒ The process value is saved and the new offset in mV is displayed.

Error messages

Possible reason for offset error:

3.1.1.1

7.60 pH

y mV

Last calibration incorrect.

Electrode old or dirty.

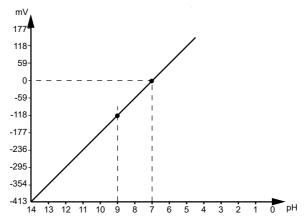
Calibration successful

Process Cal

Offset

Current Value

Cable wet or broken.


Reference measurement incorrect.

6.4. Standard Calibration

Standard pH calibration

The ideal pH electrode has an offset of 0 mV at pH 7 and a slope of 59.16 mV/pH unit. Real electrodes differ from this ideal. Therefore, pH electrodes are calibrated with two buffer solutions of different pH values.

Standard ORP calibration

The reference electrode system used is Ag/AgCl. The measured value is roughly 50 mV higher than the calomel reference system. The slope of the ORP electrode is not defined. To compensate the offset of gel electrodes, a calibration can be done with one buffer solution. Because ORP electrodes are slow, it can take some time after calibration until the measured value is stable again.

Procedure

To perform a standard calibration navigate to menu **Maintenance** > **Electrode 1/2** > **Standard Cal.** and follow the dialog on the screen.

Note:

- Calibration must be performed with a clean sensor (and a clean calibration vessel). If necessary apply the cleaning procedure described in Cleaning Electrodes, p. 38.
- · Calibration solutions have to be clean. Do not use if expired.
- Always rinse and dry electrodes before immersing them into the calibration solutions.

Error messages

Possible reason for offset or slope error:

Old, dirty or wrong buffer solutions.

Electrode old or dirty.

Cable wet or broken.

6.5. Longer Stop of Operation

- 1 Stop sample flow.
- 2 Shut off power of the instrument.
- 3 Unscrew and remove the connectors from the electrodes.
- 4 Place the caps on the sensor plugs.
- 5 Remove the electrodes from the flow cell.
- 6 Rinse the electrodes well with clean water.
- 7 Fill 3.5 molar KCI (if not available: clean water) into the protection caps and put them on the tips of the electrodes.
- **8** Store the electrodes with the tips pointing downwards in a frost-protected room.
- 9 Empty the flow cell.

7. Troubleshooting

This chapter provides some hints to make troubleshooting easier. For information on how to handle/clean parts refer to Maintenance, p. 37.

For information on how to program the instrument refer to Program List and Explanations, p. 55.

If you need help please contact your local distributor. Note serial number of instrument and all diagnostic values before.

Troubleshooting

7.1. Error List

Two categories of messages are distinguished:

Non-fatal error ■

Non-fatal instrument error or exceeding of a programmed limit value. Such errors are marked **E0xx** (bold and black) in the following list.

Fatal error - (flashing symbol)

Fatal instrument error. Control is interrupted and the displayed measured values may not be correct.

Fatal errors are divided into the following two subcategories:

- Errors which disappear when correct measuring conditions are recovered (i.e. sample flow low).
 Such errors are marked E0xx (bold and orange) in the following list.
- Errors which indicate a hardware failure of the instrument.
 Such errors are marked E0xx (bold and red) in the following list.

Error	Description	Corrective action
E001	Alarm 1 high	- Check process.
		Check programmed value.
E002	Alarm 1 low	- Check process.
		Check programmed value.
E003	Alarm 2 high	- Check process.
		Check programmed value.
E004	Alarm 2 low	- Check process Check programmed value.
5005	T 41:1	
E005	Temp. 1 high	Check process.Check programmed value.
E006	Temp. 1 low	Check process.
E006	Temp. 1 low	Check process. - Check programmed value.
E007	Temp. 2 high	not applicable
E008	Temp 2 low	not applicable
	•	• • • • • • • • • • • • • • • • • • • •
E009	Sample Flow 1 high	not applicable
E010	Sample Flow 1 low	- Check process.
		- Check programmed value.
E011	Temp. 1 shorted	Check wiring of temperature sensor.Check temperature sensor.
E040	T 4 di	Check wiring of temperature sensor.
E012	Temp. 1 disconnected	Check willing of temperature sensor. - Check temperature sensor.
E013	Case Temp. high	Check case/environment temperature.
L013	Oase Temp. High	Check programmed value.
E014	Case Temp. low	Check case/environment temperature.
	,	Check programmed value.
E017	Control timeout	Check control device or programming in
		menus Installation > Relay contacts > Relay 1 and
		Installation > Relay contacts > Relay 1 and
E019	Temp. 2 shorted	not applicable
E020	Temp. 2 disconnected	not applicable
L		1

Troubleshooting

Error	Description	Corrective action
E021	Sample Flow 2 high	not applicable
E022	Sample Flow 2 low	not applicable
E024	Input active	Message informing that the relay input has been actuated. Can be deactivated in menu Installation > Relay contacts > Input > Fault.
E026	IC LM75	- Call support.
E030	I2C Frontend	- Call support.
E031	Calibration Recout	- Call support.
E032	Wrong Frontend	- Call support.
E049	Power-on	- None, normal status.
E050	Power-down	- None, normal status.

7.2. Replacing Fuses

When a fuse has blown, find out the cause and fix it before replacement. Use tweezers or needle-nosed pliers to remove the defective fuse.

Use original fuses provided by Swan only.

AMI-II transmitter

A 0.8 AT/250V Instrument power supply

8. Program Overview

Explanations of each parameter in the menus can be found in chapter Program List and Explanations, p. 55.

- Menu 1 Messages informs about pending errors and maintenance tasks and shows the error history. Password protection possible. No settings can be modified.
- Menu 2 Diagnostics is accessible to anyone at any time. No password protection. No settings can be modified.
- Menu 3 Maintenance is intended for service technicians: Calibration, simulation of outputs and set time/date. Please protect with password.
- Menu 4 Operation is intended for the user and allows setting
 of limit values, alarm values, etc. The presetting is made in the
 Installation menu (for the system engineer only). Please protect with password.
- Menu 5 Installation: Defining assignment of all inputs and outputs, measuring parameters, interface, passwords, etc. Menu for the system engineer. Password strongly recommended.

8.1. Messages (Main Menu 1)

Pending Errors 1.1*	Pending Errors	1.1.5*	* Menu numbers
Message List	Number	1.2.1*	
1.2*	Date, Time		

8.2. Diagnostics (Main Menu 2)

Identification	Designation			* Menu numbers
2.1*	Version			
	Bootloader			
	Factory Test	Motherboard	2.1.4.1*	
	2.1.4*	Front End		
	Operating Time	Years, days, hours, m	inutes, seconds	2.1.5.1*
	2.1.5*			
Sensors	Electrode 1	Current Value	2.2.1.1*	
2.2*	2.2.1*	(Raw value) mV		
		Cal. History	Number	
		2.2.1.5*	Date, Time	
			Offset	
			Slope	
	Electrode 1	Current Value	2.2.2.1*	
	2.2.2*	(Raw value) mV		
		Cal. History	Number	
		2.2.2.5*	Date, Time	
			Offset	
			Slope	
	Miscellaneous	Case Temp.	2.2.3.1*	
	2.2.3*			
Sample	Sample ID	2.3.1*		
2.3*	Temperature	Temperature 1	2.3.2.1*	
	2.3.2*	(PT1K)		
		Temperature 2		
		(PT1K)		
	Flow	Flow 1	Sensor	2.3.3.1.1*
	2.3.3*	2.3.3.1*	Sample flow	
			(Raw value)	
		Flow 2	Sensor	2.3.3.2.1*
		2.3.3.2*	Sample flow	
			(Raw value)	

Program Overview

I/O State	Relays	Alarm Relay	2.4.1.1*
2.4*	2.4.1*	Relay 1/2/3/4	

Input

Signal Outputs Signal Output 1/2/3/4 2.4.2.1*

2.4.2*

SD Card State 2.5.1*

2.5*

InterfaceProtocol2.6.1*(only with RS4852.6*Baud rateinterface)

3.4*

8.3. Maintenance (Main Menu 3)

Electrode 1	Process Cal			* Menu numbers
3.1*	3.1.1*			
	Standard Cal			
	3.1.2*			
Electrode 2	Process Cal			
3.2*	3.2.1*			
	Standard Cal			
	3.2.2*			
Simulation	Relays	Alarm Relay	3.3.1.1*	
3.3*	3.3.1*	Relay 1	3.3.1.2*	
		Relay 2	3.3.1.3*	
	Signal Outputs	Signal Output 1	3.3.2.1*	
	3.3.2*	Signal Output 2	3.3.2.2*	
Set Time	(Date), (Time)			

Program Overview

8.4. Operation (Main Menu 4)

Sensors 4.10*	Filter Time Const. Hold after Cal	4.1.1* 4.1.2*		* Menu numbers
Relay Contacts	Alarm Relay	Meas. Value 1/2	Alarm High	4.2.1.1.1*
4.2*	4.2.1*	4.2.1.1*	Alarm Low	4.2.1.1.25*
			Hysteresis	4.2.1.1.35*
			Delay	4.2.1.1.45*
	Relay 1/2	Setpoint	4.2.x.200*	
	4.2.2*/4.2.3*	Hysteresis	4.2.x.300*	
		Delay	4.2.x.40*	
	Input	Active	4.2.4.1*	
	4.2.4*	Signal Outputs	4.2.4.2*	
		Output / Control	4.2.4.3*	
		Fault	4.2.4.4*	
		Delay	4.2.4.5*	
Logger	Log Interval	4.3.1*		
4.3*	Clear Logger	4.3.2*		
	Eject SD Card	4.3.3*		

8.5. Installation (Main Menu 5)

Sensors	Electrodes	5.1.1*		* Menu numbers
5.1*	Temperature	Temp. Sensor	5.1.2.1*	
	5.1.2*	Default Temp.	5.1.2.2*	
	Flow	Flow 1	Sensor	5.1.3.1.1*
	5.1.3*	5.1.3.1*		
		Flow 2	Sensor	5.1.3.1.1*
		5.1.3.2*		
	Standards	pH Standard 1	@ 0 °C-50 °C	5.1.5.1.1-10*
	5.1.4*	5.1.4.1*		
		pH Standard 2	@ 0 °C-50 °C	5.1.5.2.1-10*
		5.1.4.2*		
		Redox Standard	5.1.4.3*	
Signal Outputs	Signal Output 1/2	Parameter	5.2.1.1/5.2.2.1*	
5.2*	5.2.1/5.2.2*	Current Loop	5.2.1.2/5.2.2.2*	
		Function	5.2.1.3/5.2.2.3*	
		Scaling	Range Low	5.2.x.40.10/11*
		5.2.x.40	Range High	5.2.x.40.20/21*
Relay Contacts	Alarm Relay	Meas. Value 1	Alarm High	5.3.1.1.1*
5.3*	5.3.1*	5.3.1.1*	Alarm Low	5.3.1.1.25*
			Hysteresis	5.3.1.1.35*
			Delay	5.3.1.1.45*
		Meas. Value 2	Alarm High	5.3.1.2.1*
		5.3.1.2*	Alarm Low	5.3.1.2.25*
			Hysteresis	5.3.1.2.35*
			Delay	5.3.1.2.45*
		Temperature 1	Alarm High	5.3.1.3.1*
		5.3.1.3*	Alarm Low	5.3.1.3.25*
		Temperature 2	Alarm High	5.3.1.4.1*
		5.3.1.4*	Alarm Low	5.3.1.4.25*
		Case Temp. high	5.3.1.5*	
		Case Temp. high	5.3.1.60*	
	Relay 1/2	Function	5.3.2.1/5.3.3.1*	
	5.3.2/5.3.3*	Parameter	5.3.2.20/ 5.3.3.20*	
		Setpoint	5.3.2.300 / 5.3.3.301*	
		Hysteresis	5.3.2.400*	
		Delay	5.3.2.50*	

Program Overview

	Input	Active	5.3.4.1*	* Menu numbers
	5.3.4*	Signal Outputs	5.3.4.2*	
		Output/Control	5.3.4.3*	
		Fault	5.3.4.4*	
		Delay	5.3.4.5*	
Miscellaneous	Language	5.4.1*		
5.4*	Set defaults	5.4.2*		
	Load Firmware	5.4.3*		
	Password	Messages	5.4.4.1*	
	5.4.4*	Maintenance	5.4.4.2*	
		Operation	5.4.4.3*	
		Installation	5.4.4.4*	
	Sample ID	5.4.5*		
Interface	Protocol	5.5.1*		(only with RS485
5.5*	Device Address	5.5.21*		interface)
	Baud Rate	5.5.31*		
	Parity	5.5.41*		

9. Program List and Explanations

1 Messages

1.1 Pending Errors

1.1.5 Provides the list of active errors with their status (active, acknowledged). When all active errors have been acknowledged, the alarm relay is active again. Cleared errors are moved to the message list.

1.2 Message List

1.2.1 Shows the error history: Error code, date and time of issue and status (active, acknowledged, cleared). 64 errors are memorized. Then the oldest error is cleared to save the newest one (circular buffer).

2 Diagnostics

2.1 Identification

Desig.: Designation of the instrument.

Version: Version of the instrument firmware.

Bootloader: Version of the bootloader.

- **2.1.4 Factory Test:** Test date of the mainboard and frontend.
- **2.1.5** Operating Time: Years, days, hours, minutes, seconds.

2.2 Sensors

2.2.1 Electrode 1

Current value: Shows the measured value (pH or redox potential). Raw value: Shows the raw value in mV.

2.2.1.5 *Cal. History:* Shows previous calibrations of the pH or redox electrode. 64 data records are memorized.

2.2.2 Electrode 2

Current value: Shows the measured value (pH or redox potential). Raw value: Shows the raw value in mV.

2.2.2.5 *Cal. History:* Shows previous calibrations of the pH or redox electrode. 64 data records are memorized.

2.2.3 Miscellaneous

2.2.3.1 *Case Temp:* Shows the current temperature in °C inside the transmitter

Program List and Explanations

2.3 Sample

2.3.1xx Sample ID: Shows the ID used to identify the location of the sample.

2.3.2 Temperature

Temperature 1: Shows the current sample temperature in °C. (Pt1000): Shows the current sample temperature in Ohm. Temperature 2: Not applicable. (Pt1000): Not applicable.

2.3.3 Flow

Flow 1: Shows the type of flow sensor (level switch). Flow 2: Not applicable.

2.4 I/O State

2.4.1 Relays

2.4.1.1 Alarm Relay: Active or inactive Relays 1 and 2: Active or inactive

Relays 3 and 4: Active or inactive (if optional AMI-II Relay

Box is installed)
Open or closed

Input: 2.4.2 Signal Outputs

2.4.2.1 Signal Outputs 1 and 2: Current in mA

Signal Outputs 3 and 4: Current in mA (if option is installed)

2.5 SD Card

2.5.1 Status: Shows the status of the SD card.

2.6 Interface

Settings of the installed communication option (if any).

3 Maintenance

3.1 Electrode 1

- 3.1.1 Process Cal.: See Process Calibration, p. 40.
- 3.1.2 Standard Cal.: See Standard Calibration, p. 41.

3.2 Electrode 2

- 3.2.1 Process Cal.: See Process Calibration, p. 40.
- 3.2.2 Standard Cal.: See Standard Calibration, p. 41.

3.3 Simulation

2 2 1

Polave

To simulate a value or a relay state, select

- alarm relay
- relay 1 or 2
- relay 3 or 4 (if optional AMI-II Relay Box is installed)
- signal outputs 1 or 2
- signal outputs 3 or 4 (if option is installed)

Change the value or state of the selected item with the arrow keys. Press [Enter].

⇒ The value is simulated by the relay/signal output.

At the absence of any key activities, the instrument will switch back to normal mode after 20 min.

Current in mA

3.3.1	Relays	
3.3.1.1	Alarm relay:	Active or inactive
3.3.1.2	Relay 1:	Active or inactive
3.3.1.3	Relay 2:	Active or inactive
3.3.1.4	Relay 3:	Active or inactive
3.3.1.5	Relay 4:	Active or inactive
3.3.2	Signal outputs	
0.0.2	Signal outputs	
3.3.2.1	Signal outputs 1:	Current in mA
	•	Current in mA Current in mA
3.3.2.1	Signal outputs 1:	

3.4 Set Time

3.3.2.4

Adjust date and time.

Signal outputs 4:

Program List and Explanations

4 Operation

4.1 Sensors

- 4.1.1 Filter Time Constant: Used to damp noisy signals. The higher the filter time constant, the slower the system reacts to changes of the measured value.
 Range: 5–300 s
- 4.1.2 Hold after Cal.: Delay permitting the instrument to stabilize again after calibration. During calibration plus hold time, the signal outputs are frozen (held on last valid value), alarm values, limits are not active.

Range: 0-6000 s

4.2 Relay Contacts

See Relay Contacts, p. 64.

4.3 Logger

The instrument is equipped with an internal logger. The logger data can be copied to the SD card.

- 4.3.1 Log Interval: Select a convenient log interval.
 Range: 1 s, 5 s, 1 min, 5 min, 10 min, 30 min or 1 h.
- 4.3.2 *Clear Logger:* If confirmed with yes, the complete logger data is deleted. A new data series is started.
- 4.3.3 Eject SD Card: With this function all logger data are copied to the SD card and the SD card can be removed.

Program List and Explanations

Flectrodes

5 Installation

511

5.1 Sensors

•	
5.1.1.1	Electrodes: Must be set to "pH - mV".
5.1.1.2/3	Temp. compensation 1
5.1.3.x.1	Comp.: Must be set to "Nernst".
5.1.2	Temperature
5.1.2.1	Temp. sensor: Must be set to "1 Sensor".
5.1.2.2	Default Temp.: Not applicable.
5.1.3	Flow
5.1.3.1	Flow 1
5.1.3.1.1	Sensor: Must be set to "Level switch".
5.1.3.2	Flow 2
5.1.3.2.1	Sensor: Not applicable.
5.1.4	Standards: If you want to use standard solutions different from the recommended Swan standard solutions, enter the values.

pH Standard 1: Range: pH 1 to pH 13.

pH Standard 2: Range: pH 1 to pH 13.

Redox Standard: Range: 400 to 500 mV.

5.1.4.3 Red 5.2 Signal Outputs

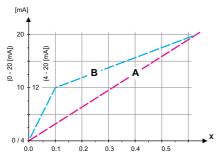
5.1.4.1

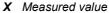
5.1.4.2

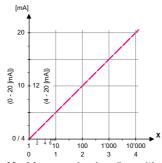
Note: The navigation in the menus Signal Output 1 and Signal Output 2 is equal. For reason of simplicity only the menu numbers of Signal Output 1 are used in the following.

- **5.2.1 Signal Output 1:** Assign process value, the current loop range and a function to each signal output.
- 5.2.1.1 *Parameter:* Assign one of the process values to the signal output. Available values:
 - Measured value 1
 - Measured value 2
 - Temperature
- 5.2.1.2 *Current Loop:* Select the current range of the signal output.

 Make sure the connected device works with the same current range.


 Available ranges: 0–20 mA or 4–20 mA


- 5.2.1.3 *Function:* Define if the signal output is used to transmit a process value or to drive a control unit. Available functions are:
 - · Linear, bilinear or logarithmic for process values.
 - Control upwards or control downwards.


As process values

The process value can be represented in three ways: linear, bilinear or logarithmic. See graphs below.

- **A** Linear
- **B** Bilinear

X Measured value (logarithmic)

5.2.1.40 Scaling: Enter beginning and end point (range low and high) of the linear or logarithmic scale. In addition, the midpoint for the bilinear scale.

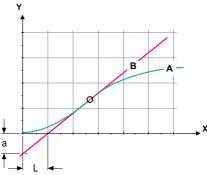
Parameter Meas. value 1:

5.2.1.40.10 Range low: -3 pH-15 pH

5.2.1.40.20 Range low: -3 pH-15 pH

Program List and Explanations

5.2.1.40.10	Parameter Meas. value 2: Range low: -500-1500 mV
5.2.1.40.20	Range low: -500-1500 mV Parameter Temperature 1:
5.2.1.40.11	Range low: -25–270 °C
5.2.1.40.21	Range high: -25–270 °C


As control output

Signal outputs can be used for driving control units. We distinguish different kinds of controls:

- P controller: The controller action is proportional to the deviation from the setpoint. The controller is characterized by the P band. In the steady state, the setpoint will never be reached. The deviation is called steady-state error.
 Parameters: setpoint. P band
- PI controller: The combination of a P controller with an
 I controller will minimize the steady-state error. If the reset time
 is set to zero, the I controller is switched off.
 Parameters: setpoint, P band, reset time.
- PD controller: The combination of a P controller with a
 D controller will minimize the response time to a fast change of
 the process value. If the derivative time is set to zero, the D
 controller is switched off.
 Parameters: setpoint, P band, derivative time.
- PID controller: The combination of a P, an I and a D controller allows a proper control of the process.
 Parameters: setpoint. P band, reset time, derivative time.

Ziegler-Nichols method for the optimization of a PID controller: **Parameters:** Setpoint, P band, reset time, derivative time.

A Response to maximum control output Xp = 1.2/a

B Tangent on the inflection point Tn = 2L

X Time Tv = L/2

The point of intersection of the tangent with the respective axis will result in the parameters a and L.

Consult the manual of the control unit for connecting and programming details. Choose control upwards or downwards.

Control upwards or downwards

Setpoint: User-defined process value for the selected parameter. *P band:* Range below (upwards control) or above (downwards control) the setpoint, within the dosing intensity is reduced from 100% to 0% to reach the setpoint without overshooting.

5.2.1.43	Control Parameters:	if Parameters	= Meas.	Value	1
----------	---------------------	---------------	---------	-------	---

5.2.1.43.10 Setpoint: -3.00 pH to +15.00 pH

5.2.1.43.20 P-Band: 0.00 pH to +2.00 pH

5.2.1.43 Control Parameters: if Parameters = Meas. Value 2

5.2.1.43.11 Setpoint: -1500 mV to +1500 mV

5.2.1.43.21 P-Band: 0 mV to 200 mV

5.2.1.43 Control Parameters: if Parameters = Temperature 1

5.2.1.43.12 Setpoint: -30 °C to +120 °C 5.2.1.43.22 P-Band: 0 °C to +100 °C

5.2.1.43.3 Reset time: The reset time is the time till the step response of a sin-

gle I-controller will reach the same value as it will be suddenly

reached by a P-controller.

Range: 0-9000 s

Program List and Explanations

- 5.2.1.43.4 Derivative time: The derivative time is the time till the ramp response of a single P-controller will reach the same value as it will be suddenly reached by a D-controller.

 Range: 0–9000 s
- 5.2.1.43.5 Control timeout: If a controller action (dosing intensity) is constantly over 90% during a defined period of time and the process value does not come closer to the setpoint, the dosing process will be stopped for safety reasons.

 Range: 0–720 min

5.3 Relay Contacts

5.3.1 Alarm Relay: The alarm relay is used as cumulative error indicator. Under normal operating conditions the contact is active.

The contact is inactive at:

- Power loss
- Detection of system faults like defective sensors or electronic parts
- High case temperature
- Process values out of programmed ranges.

Program alarm levels, hysteresis values and delay times for the following parameters:

- Measured value 1
- Measured value 2
- Temperature 1
- Case Temperature high
- Case Temperature low

5.3.1.1 Meas. Value 1

5.3.1.1.1 Alarm High: If the measured value rises above the alarm high value, the alarm relay becomes inactive and E001 is displayed in the message list.

Range: -3 to 15 pH or -1500 mV to 1500 mV

5.3.1.1.25 Alarm Low: If the measured value falls below the alarm low value, the alarm relay becomes inactive and E002 is displayed in the message list.

Range: -3 to 15 pH or -1500 mV to 1500 mV

5.3.1.1.35 *Hysteresis:* Within the hysteresis range, the relay does not switch. This prevents damage to the relay contacts when the measured value fluctuates around the limit.

Range: 0 to 2.00 pH or 0 mV to 200 mV

5.3.1.1.45 Delay: Waiting time before the alarm relay becomes inactive after the measured value has risen above or fallen below the programmed alarm value.

Range: 0-28'800 s

5.3.1.2 Meas. Value 2

5.3.1.2.1 Alarm High: If the measured value rises above the alarm high value, the alarm relay becomes inactive and E003 is displayed in the message list.

Range: -3 to 15 pH or -1500 mV to 1500 mV

5.3.1.2.25 Alarm Low: If the measured value falls below the alarm low value, the alarm relay becomes inactive and E004 is displayed in the message list.

Range: -3 to 15 pH or -1500 mV to 1500 mV

- 5.3.1.2.35 *Hysteresis:* Within the hysteresis range, the relay does not switch. This prevents damage to the relay contacts when the measured value fluctuates around the limit.
 - Range: 0 to 2.00 pH or 0 mV to 200 mV
- 5.3.1.2.45 Delay: Waiting time before the alarm relay becomes inactive after the measured value has risen above or fallen below the programmed alarm value.

 Range: 0–28'800 s

5.3.1.x Temperature 1

5.3.1.x.1 Alarm High: If the measured value rises above the alarm high value, the alarm relay becomes inactive and E005 is displayed in the message list.

Range: -25-270 °C

5.3.1.x.26 Alarm Low: If the measured value falls below the alarm low value, the alarm relay becomes inactive and E006 is displayed in the message list.

Range: -25-270 °C

- 5.3.1.5 Case Temp. high: Set the alarm high value for the temperature of the electronics housing. If the value rises above the programmed value E013 is issued.

 Range: 30–75 °C
- 5.3.1.6 Case Temp. low: Set the alarm low value for the temperature of the electronics housing. If the value falls below the programmed value E014 is issued.

 Range: -10-20 °C
 - **5.3.x** Relay 1 and 2: The function of relay contacts 1 or 2 is defined by the user.

Note: The navigation in the menus Relay 1 and Relay 2 is equal. For reason of simplicity only the menu numbers of Relay 1 are used in the following.

- 1 First select the functions as:
 - Limit upper/lower,
 - Control upwards/downwards,
 - Timer
 - Fieldbus
- 2 Then enter the necessary data depending on the selected function. The same values can also be entered in menu 4.2.

5.3.5.3.2.1 Function = Limit upper/lower

If the relays are used as upper or lower limit switches, program the following:

Program List and Explanations

5.3.2.20 *Parameter:* select a process value.

5.3.2.300 Setpoint: If the measured value rises above respectively falls below the setpoint, the relay is activated.

Parameter	Range
Meas. value 1	-3.00 to 15.00 pH
Meas. value 2	-1500 to 1500 mV
Temperature 1	-30-120 °C

5.3.2.400 *Hysteresis:* within the hysteresis range, the relay does not switch. This prevents damage of relay contacts when the measured value fluctuates around the limit

Parameter	Range
Meas. value 1	0.00 to 2.00 pH or 0 to 200 mV
Meas. value 2	0.00 to 2.00 pH or 0 to 200 mV
Temperature 1	0-100 °C

5.3.2.50 Delay: Time by which the switching of the relay is delayed after the measured value has risen above or fallen below the programmed setpoint.

Range. 0-600 s

5.3.2.1 Function = Control upwards/downwards

If the relays are used to control dosing units, program the following.

- 5.3.2.22 *Parameter:* Choose one of the following process values.
 - Measured value 1
 - Measured value 2
 - Temperature 1
- **5.3.2.32 Settings:** Choose the respective actuator:
 - Time proportional
 - Frequency
 - Motor valve

5.3.2.32.1 Actuator = Time proportional

Dosing is controlled by the operating time.

5.3.2.32.20 *Cycle time*: Duration of one control cycle (on/off change).

Range: 0-600 s.

5.3.2.32.30 Response time: Minimal time the metering device needs to react.

Range: 0-240 s.

5.3.2.32.4 Control Parameters

Range for each parameter same as 5.2.1.43.

5.3.2.32.1	Actuator = Frequency		
5.3.2.32.21	Dosing is controlled by the repetition speed of dosing shots. <i>Pulse frequency:</i> Max. pulses per minute the device is able to respond to. Range: 20–300/min.		
5.3.2.32.31	Control Parameters Range for each parameter same as 5.2.1.43.		
5.3.2.32.1	Actuator = Motor valve		
	Note Box	e: This function is only available with optional AMI-II Relay	
		is controlled by the position of a motor-driven mixing valve vo relays (i.e. two relays are needed to control one motor	
5.3.2.32.22	Run tim Range:	e: Time needed to open a completely closed valve. 5–300 s.	
5.3.2.32.32	request change	Neutral zone: Minimal response time in percent of the runtime. If the requested dosing output is smaller than the response time, no change will take place. Range: 1–20%.	
5.3.2.32.4	Control Parameters Range for each parameter same as 5.2.1.43.		
	rtange i	or each parameter same as 0.2.1.40.	
5.3.2.1		n = Timer	
5.3.2.1	Function	n = Timer ny will be activated repetitively depending on the programmed	
5.3.2.1 5.3.2.24	Function The relatione sch	n = Timer ny will be activated repetitively depending on the programmed	
2.2.	Function The relatione sch	n = Timer ny will be activated repetitively depending on the programmed neme.	
5.3.2.24	Function The relatime sch Mode: 0	n = Timer ny will be activated repetitively depending on the programmed neme. Operating mode (interval, daily, weekly). The interval can be programmed within a range	
5.3.2.24 5.3.2.24	Function The relatime sch Mode: (Interval Interval of 1–14 Run Tin	n = Timer ny will be activated repetitively depending on the programmed neme. Operating mode (interval, daily, weekly). The interval can be programmed within a range	
5.3.2.24 5.3.2.24 5.3.2.340	Function The relatime sch Mode: (Interval Interval of 1–14 Run Tin Range: Delay: I puts are	n = Timer ny will be activated repetitively depending on the programmed neme. Operating mode (interval, daily, weekly). The interval can be programmed within a range 40 min. ne: Enter the time the relay stays active.	
5.3.2.24 5.3.2.24 5.3.2.340 5.3.2.44	Function The relatime sch Mode: (Interval Interval of 1–14 Run Tin Range: Delay: I puts are Range:	n = Timer by will be activated repetitively depending on the programmed name. Deparating mode (interval, daily, weekly). The interval can be programmed within a range 40 min. be: Enter the time the relay stays active. 5-32400 s. During run time plus the delay time the signal and control outsled held in the operating mode programmed below.	
5.3.2.24 5.3.2.340 5.3.2.44 5.3.2.54	Function The relatime sch Mode: (Interval Interval of 1–14 Run Tin Range: Delay: I puts are Range:	n = Timer ay will be activated repetitively depending on the programmed neme. Operating mode (interval, daily, weekly). The interval can be programmed within a range 40 min. ne: Enter the time the relay stays active. 5-32400 s. Ouring run time plus the delay time the signal and control oute held in the operating mode programmed below. 0-6000 s.	
5.3.2.24 5.3.2.340 5.3.2.44 5.3.2.54	Function The relatime sch Mode: (Interval Interval of 1–14 Run Tin Range: Delay: I puts are Range: Signal (I	n = Timer ay will be activated repetitively depending on the programmed neme. Departing mode (interval, daily, weekly). The interval can be programmed within a range 40 min. The Enter the time the relay stays active. 5-32400 s. During run time plus the delay time the signal and control outer held in the operating mode programmed below. 0-6000 s. Dutputs: Select operating mode of the signal output:	

5.3.2.7	Output/Control: Select operating mode of the controller output:		
	Cont.:	Contro	oller continues normally.
	Hold:	Contro	oller continues based on the last valid value.
	Off:	Contro	oller is switched off.
5.3.2.24	daily		
	The rela	ay conta	act can be activated daily, at any time of a day.
5.3.2.341			e of day at which the relay is activated. 00–23:59:59
5.3.2.44	Run Tin	ne: see	Interval.
5.3.2.54	Delay: see Interval.		
5.3.2.6	Signal Outputs: see Interval.		
5.3.2.7	Output/	Control	l: see Interval.
5.3.2.24	weekly		
	The rela	y conta	act can be activated on one or several days of a week.
5.3.2.342	Calend	ar	
5.3.2.342.1	gramme	ed days	programmed start time is valid for each of the pro- 00–23:59:59
5.3.2.342.2	-		ble settings, on or off.
5.3.2.342.8	Sunday	: Possik	ble settings, on or off.
5.3.2.44	Run Tin	ne: see	Interval.
5.3.2.54	Delay: s	see Inte	rval.
5.3.2.6	Signal Outputs: see Interval.		
5.3.2.7	Output/	Control	: see Interval.
5.3.2.1	Function	n = Fiel	dbus
	The rela		itched via Profibus or Modbus. No further parameters
5.3.4	Input: The functions of the relays and signal outputs can be defined depending on the position of the input contact, i.e. no function, closed or open.		
5.3.4.1	Active:	Define \	when the input should be active:
	No:		Input is never active.
	When c	losed	Input is active when the input relay is closed

Input is active when the input relay is open

When open:

5.3.4.2 Signal Outputs: Select the operation mode of the signal outputs

when the input is active:

Continuous: Signal outputs continue to issue the measured

value.

Hold: Signal outputs hold the last valid measured value.

Errors, except fatal errors, are not issued.

Off: Sets the signal outputs to 0 or 4 mA. Errors, except

fatal errors, are not issued.

5.3.4.3 *Output/Control:* (relay or signal output):

Continuous: Controller continues normally.

Hold: Controller continues based on the last valid value.

Off: Controller is switched off.

5.3.4.4 Fault:

No: No message is issued in pending error list and the

alarm relay does not switch when input is active. Message E024 is stored in the message list.

Yes: Message E024 is issued and stored in the message

list. The alarm relay switches when input is active.

5.3.4.5 Delay: Time that the instrument waits after the input is deactivated,

before returning to normal operation.

Range: 0-6'000 s

Program List and Explanations

5.4 Miscellaneous

- 5.4.1 Language: Set the desired language.
 Available settings: German, English, French, Spanish.
- 5.4.2 Set defaults: Reset the instrument to factory default values in three different ways:
 - Calibration: Sets calibration values back to default. All other values are kept in memory.
 - In parts: Communication parameters are kept in memory. All other values are set back to default values.
 - Completely: Sets back all values including communication parameters.
- 5.4.3 *Load Firmware:* Firmware updates should be done by instructed service personnel only.
- 5.4.4 **Password:** Select a password different from 0000 to prevent unauthorized access to the menus "Messages", "Maintenance", "Operation" and "Installation".
 - Each menu can be protected by a different password. If you forgot the passwords, contact the closest Swan representative.
- 5.4.5 Sample ID: Identify the process value with any meaningful text, such as KKS number.

Program List and Explanations

5.5 Interface

Select one of the following communication protocols. Depending on your selection, different parameters must be defined.

5.5.1	Protocol: Profibus	;
5.5.20	Device address:	Range: 0–126
5.5.30	ID no.:	Range: Analyzer; Manufacturer; Multivariable
5.5.40	Local operation:	Range: Enabled, Disabled
5.5.1	Protocol: Modbus	RTU
5.5.1 5.5.21	Protocol: Modbus Device address:	RTU Range: 0–126

5.5.1 Protocol: HART

Device address: Range: 0-63

10. Material Safety Data Sheets

Download MSDS

The current Material Safety Data Sheets (MSDS) for the reagents listed below are available for download at **www.swan.ch**.

Catalogue no.: A-85.112.300

Product name: Calibration solution pH4

Catalogue no.: A-85.113.300, A-85.113.500, A-85.113.700

Product name: Calibration solution pH7

Catalogue no.: A-85.114.300, A-85.114.500, A-85.114.700

Product name: Calibration solution pH9

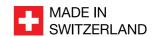
Catalogue no.: A-85.121.300

Product name: Redox calibration solution

11. Default Values

Operation		
Sensors:		30 s 300 s
Relay Contacts	_	same as in Installationsame as in Installation
	Input	same as in Installation
Logger:		30 min
Installation		
Sensors	Temperature: Temp. Sensor Temperature: Default Temp Flow: Flow 1: Flow: Flow 2: Standards: pH Standard 1 Standards: pH Standard 2	
Signal Output 1	Current loop: Function: Scaling: Range low:	
Signal Output 2	Current loop: Function: Scaling: Range low:	
Alarm Relay	Meas. value 1: Alarm low:	

	Temperature 2: Alarm low:
	Case temp. high:
	Case temp. low: 0 °C
Relay 1/2	Function:limit upper
	Parameter: Meas. value
	Setpoint:
	Hysteresis:
	If Function = Control upw. or dnw:
	Settings: Actuator: Frequency
	Settings: Pulse Frequency:
	Settings: Control Parameters: Setpoint:14.00 pH/1400 mV
	Settings: Control Parameters: P-band:0.10 pH/10 mV
	Settings: Control Parameters: Reset time:
	Settings: Control Parameters: Derivative Time:0 s
	Settings: Control Parameters: Control Timeout:0 min
	Settings: Actuator:Time proportional
	Cycle time:60 s
	Response time:10 s
	If Function = Timer:
	Mode:Interval
	Interval:1 min
	Mode:daily
	Start time:
	Mode: weekly
	Calendar; Start time:
	Calendar; Monday to Sunday:Off
	Run time:10 s
	Delay:5 s
	Signal output:cont
	Output/Control:cont
Input	Active when closed
'	Signal Outputshold
	Output/Control off
	Faultno
	Delay10 s
Miscellaneous	Language:English
	Set default: no
	Load firmware: no
	Password:for all modes 0000
	Sample ID:


A-96.210.711 / 031025

Swan Products - Analytical Instruments for:

Swan is represented worldwide by subsidiary companies and distributors and cooperates with independent representatives all over the world. For contact information, please scan the QR code.

Swan Analytical Instruments · CH-8340 Hinwil www.swan.ch · swan@swan.ch

